【題目】某高三理科班共有名同學(xué)參加某次考試,從中隨機(jī)挑出名同學(xué),他們的數(shù)學(xué)成績(jī)與物理成績(jī)如下表:
數(shù)學(xué)成績(jī) | |||||
物理成績(jī) |
(1)數(shù)據(jù)表明與之間有較強(qiáng)的線性關(guān)系,求關(guān)于的線性回歸方程;
(2)本次考試中,規(guī)定數(shù)學(xué)成績(jī)達(dá)到分為優(yōu)秀,物理成績(jī)達(dá)到分為優(yōu)秀.若該班數(shù)學(xué)優(yōu)秀率與物理優(yōu)秀率分別為和,且除去抽走的名同學(xué)外,剩下的同學(xué)中數(shù)學(xué)優(yōu)秀但物理不優(yōu)秀的同學(xué)共有人,請(qǐng)寫出列聯(lián)表,判斷能否在犯錯(cuò)誤的概率不超過的前提下認(rèn)為數(shù)學(xué)優(yōu)秀與物理優(yōu)秀有關(guān)?
參考數(shù)據(jù):,;,;
【答案】(1);(2)在犯錯(cuò)誤的概率不超過的前提下認(rèn)為數(shù)學(xué)優(yōu)秀與物理優(yōu)秀有關(guān)。
【解析】
(1)依據(jù)最小二乘法的步驟即可求出關(guān)于的線性回歸方程;(2)根據(jù)題意寫出列聯(lián)表,由公式計(jì)算出的觀測(cè)值,比較與6.635的大小,即可判斷是否有關(guān)。
(1)由題意可得,
所以,,
故關(guān)于的線性回歸方程是。
(2)由題意可知,該班數(shù)學(xué)優(yōu)秀人數(shù)及物理優(yōu)秀人數(shù)分別為30,36,抽出的5人中,數(shù)學(xué)優(yōu)秀但是物理不優(yōu)秀的共有1人,故全班數(shù)學(xué)優(yōu)秀但是物理不優(yōu)秀的共有6人,于是得到列聯(lián)表為:
物理優(yōu)秀 | 物理不優(yōu)秀 | 合計(jì) | |
數(shù)學(xué)優(yōu)秀 | 24 | 6 | 30 |
數(shù)學(xué)不優(yōu)秀 | 12 | 18 | 30 |
合計(jì) | 36 | 24 | 36 |
于是的觀測(cè)值為,
因此,在犯錯(cuò)誤的概率不超過的前提下認(rèn)為數(shù)學(xué)優(yōu)秀與物理優(yōu)秀有關(guān)。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】 設(shè)函數(shù),其中.
(Ⅰ)若,討論的單調(diào)性;
(Ⅱ)若,
(i)證明恰有兩個(gè)零點(diǎn)
(ii)設(shè)為的極值點(diǎn),為的零點(diǎn),且,證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)閱讀下列材料并填空:對(duì)于二元一次方程組,我們可以將、的系數(shù)和相應(yīng)的常數(shù)項(xiàng)排成一個(gè)數(shù)表,求得的一次方程組的解,用數(shù)表可表示為.用數(shù)表可以簡(jiǎn)化表達(dá)解一次方程組的過程如下,請(qǐng)補(bǔ)全其中的空白:,從而得到該方程組的解集________;
(2)仿照(1)中數(shù)表的書寫格式寫出解方程組的過程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,五面體中,四邊形是菱形, 是邊長(zhǎng)為2的正三角形, , .
(1)證明: ;
(2)若在平面內(nèi)的正投影為,求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2016·鄭州模擬)某市公安局為加強(qiáng)安保工作,特舉行安保項(xiàng)目的選拔比賽活動(dòng),其中A、B兩個(gè)代表隊(duì)進(jìn)行對(duì)抗賽,每隊(duì)三名隊(duì)員,A隊(duì)隊(duì)員是A1、A2、A3,B隊(duì)隊(duì)員是B1、B2、B3,按以往多次比賽的統(tǒng)計(jì),對(duì)陣隊(duì)員之間勝負(fù)概率如下表,現(xiàn)按表中對(duì)陣方式進(jìn)行三場(chǎng)比賽,每場(chǎng)勝隊(duì)得1分,負(fù)隊(duì)得0分,設(shè)A隊(duì)、B隊(duì)最后所得總分分別為ξ,η,且ξ+η=3.
對(duì)陣隊(duì)員 | A隊(duì)隊(duì)員勝 | A隊(duì)隊(duì)員負(fù) |
A1對(duì)B1 |
| |
A2對(duì)B2 | ||
A3對(duì)B3 |
(1)求A隊(duì)最后所得總分為1的概率;
(2)求ξ的分布列,并用統(tǒng)計(jì)學(xué)的知識(shí)說明哪個(gè)隊(duì)實(shí)力較強(qiáng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)向量,,則下列敘述錯(cuò)誤的是( )
A.若時(shí),則與的夾角為鈍角
B.的最小值為
C.與共線的單位向量只有一個(gè)為
D.若,則或
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線經(jīng)過點(diǎn),其傾斜角為,在以原點(diǎn)為極點(diǎn),軸非負(fù)半軸為極軸的極坐標(biāo)系中(取相同的長(zhǎng)度單位),曲線的極坐標(biāo)方程為
(Ⅰ)若直線與曲線有公共點(diǎn),求的取值范圍;
(Ⅱ)設(shè)為曲線上任意一點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知?jiǎng)狱c(diǎn)到定直線:的距離比到定點(diǎn)的距離大2.
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)在軸正半軸上,是否存在某個(gè)確定的點(diǎn),過該點(diǎn)的動(dòng)直線與曲線交于,兩點(diǎn),使得為定值.如果存在,求出點(diǎn)坐標(biāo);如果不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某大型高端制造公司為響應(yīng)(中國(guó)制造2025)中提出的堅(jiān)持“創(chuàng)新驅(qū)動(dòng)、質(zhì)量為先、綠色發(fā)展、結(jié)構(gòu)優(yōu)化、人才為本”的基本方針,準(zhǔn)備加大產(chǎn)品研發(fā)投資,下表是該公司2017年5~12月份研發(fā)費(fèi)用(百萬(wàn)元)和產(chǎn)品銷量(萬(wàn)臺(tái))的具體數(shù)據(jù):
月份 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
研發(fā)費(fèi)用(百萬(wàn)元) | 2 | 3 | 6 | 10 | 21 | 13 | 15 | 18 |
產(chǎn)品銷量(萬(wàn)臺(tái)) | 1 | 1 | 2 | 2.5 | 6 | 3.5 | 3.5 | 4.5 |
(1)根據(jù)數(shù)據(jù)可知與 之間存在線性相關(guān)關(guān)系.
(i)求出關(guān)于的線性回歸方程(系數(shù)精確到0.001);
(ii)若2018年6月份研發(fā)投人為25百萬(wàn)元,根據(jù)所求的線性回歸方估計(jì)當(dāng)月產(chǎn)品的銷量;
(2)為慶祝該公司9月份成立30周年,特制定以下獎(jiǎng)勵(lì)制度:以(單位:萬(wàn)臺(tái))表示日銷量,,則每位員工每日獎(jiǎng)勵(lì)200元;,則每位員工每日獎(jiǎng)勵(lì)300元;,則每位員工每日獎(jiǎng)勵(lì)400元.現(xiàn)已知該公司9月份日銷量(萬(wàn)臺(tái))服從正態(tài)分布,請(qǐng)你計(jì)算每位員工當(dāng)月(按30天計(jì)算)獲得獎(jiǎng)勵(lì)金額總數(shù)大約多少元
參考數(shù)據(jù):.
參考公式:對(duì)于一組數(shù)據(jù).其回歸直線的斜率和截距的最小二乘估計(jì)分別為
若隨機(jī)變量服從正態(tài)分布,則.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com