1.設Sn是數(shù)列{an}的前n項和,且a2=$\frac{1}{2}$,an+1=SnSn+1,則Sn=$-\frac{1}{n}$或$\frac{1}{3-n}$.

分析 通過an+1=Sn+1-Sn=SnSn+1,并變形可得數(shù)列{$\frac{1}{{S}_{n}}$}是公差為-1的等差數(shù)列,把a2=$\frac{1}{2}$代入條件式得出a1,求出{$\frac{1}{{S}_{n}}$}的通項公式,從而可得Sn

解答 解:∵an+1=SnSn+1,
∴an+1=Sn+1-Sn=SnSn+1,
∴$\frac{1}{{S}_{n}}$-$\frac{1}{{S}_{n+1}}$=1,即$\frac{1}{{S}_{n+1}}-\frac{1}{{S}_{n}}=-1$.
∴{$\frac{1}{{S}_{n}}$}是公差為-1的等差數(shù)列.
∵a2=$\frac{1}{2}$,an+1=SnSn+1.∴$\frac{1}{2}$=a1(a1+$\frac{1}{2}$),
解得a1=-1或a1=$\frac{1}{2}$.
當a1=-1時,$\frac{1}{{S}_{1}}$=-1,∴$\frac{1}{{S}_{n}}$=-1+(n-1)×(-1)=-n,∴Sn=-$\frac{1}{n}$,
當a1=$\frac{1}{2}$時,$\frac{1}{{S}_{1}}$=2,∴$\frac{1}{{S}_{n}}$=2+(n-1)×(-1)=-n+3,∴Sn=$\frac{1}{3-n}$.
故答案為:$-\frac{1}{n}$或$\frac{1}{3-n}$.

點評 本題考查求數(shù)列的通項,對表達式的靈活變形是解決本題的關鍵,注意解題方法的積累,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

15.在銳角△ABC中,已知AB=4,AC=1,△ABC的面積為$\sqrt{3}$,則∠BAC=60°,$\overrightarrow{AB}$•$\overrightarrow{AC}$=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知隨機變量X的分布列如表,則X取負數(shù)的概率為( 。
X-2-101
P0.10.40.30.2
A.0.1B.0.4C.0.5D.0.04

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,底面ABCD為菱形,E為棱PB的中點,O為AC與BD的交點,
(Ⅰ)證明:PD∥平面EAC
(Ⅱ)證明:平面EAC⊥平面PBD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知數(shù)列{an}滿足an=$\frac{2n+4}{3}$,若從{an}中提取一個公比為q的等比數(shù)列{a${\;}_{{k}_{n}}$},其中k1=1,且k1<k2<…<kn,kn∈N*,則滿足條件的最小q的值為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.設集合M={x|x2≥x},N={x|log${\;}_{\frac{1}{2}}$(x+1)>0},則有( 。
A.M∩N=∅B.M∪N=RC.N⊆MD.M⊆∁RN
E.M⊆∁RN         

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.設a∈R,集合A=R,B={x∈R|(a-2)x2+2(a-2)x-3<0}.
(1)若a=3,求集合B(用區(qū)間表示);
(2)若A=B,求實數(shù)的a取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.設全集為實數(shù)集R,A={x|3≤x<7},B={x|$\frac{1}{4}$≤2x≤8},C={x|x<a}.
(1)求∁R(A∪B)
(2)如果A∩C≠∅,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.設x,y滿足約束條件$\left\{\begin{array}{l}{x+1≥0}\\{y-2x≥0}\\{x+y-3≤0}\end{array}\right.$,則z=x-y的最大值為(  )
A.-5B.-1C.5D.1

查看答案和解析>>

同步練習冊答案