A. | $\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{8}$=1 | B. | $\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{8}$=1 | C. | $\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{12}$=1 | D. | $\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{4}$=1 |
分析 利用雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的離心率為$\frac{\sqrt{6}}{2}$,左頂點(diǎn)到一條漸近線的距離為$\frac{2\sqrt{6}}{3}$,建立方程組,求出a,b,即可求出該雙曲線的標(biāo)準(zhǔn)方程.
解答 解:由題意,$\left\{\begin{array}{l}{\frac{\sqrt{{a}^{2}+^{2}}}{a}=\frac{\sqrt{6}}{2}}\\{\frac{ab}{\sqrt{{a}^{2}+^{2}}}=\frac{2\sqrt{6}}{3}}\end{array}\right.$,
解的b=2,a=2$\sqrt{2}$,
∴雙曲線的標(biāo)準(zhǔn)方程為$\frac{{x}^{2}}{8}-\frac{{y}^{2}}{4}=1$.
故選:D.
點(diǎn)評 本題考查雙曲線的方程和性質(zhì),主要考查漸近線方程和離心率的求法,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | l | B. | -l | C. | ±l | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 16 cm3 | B. | 18 cm3 | C. | 20 cm3 | D. | 24 cm3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=$\sqrt{x^2}$,g(x)=($\sqrt{x}$)2 | B. | f(x)=1,g(x)=x0 | ||
C. | f(x)=$\root{3}{x^3}$,g(x)=x | D. | f(x)=x-1,g(x)=$\frac{{{x^2}-1}}{x+1}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $(a+b)(\frac{1}{a}+\frac{1})≥4$ | B. | a3+b3≥2ab | C. | a2+b2≥2a+2b | D. | $\sqrt{|{a-b}|}$≤$|\sqrt{a}-\sqrt|$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com