20.在平面直角坐標(biāo)系中,下列四個結(jié)論:
①每一條直線都有點斜式和斜截式方程;
②傾斜角是鈍角的直線,斜率為負數(shù);
③方程$k=\frac{y+1}{x-2}$與方程y+1=k(x-2)可表示同一直線;
④直線l過點P(x0,y0),傾斜角為90°,則其方程為x=x°
其中正確的個數(shù)為( 。
A.1B.2C.3D.4

分析 ①,斜率不存在的直線無點斜式和斜截式方程;
②,由傾斜角與斜率的關(guān)系知,傾斜角是鈍角的直線,斜率為負數(shù);
③,方程$k=\frac{y+1}{x-2}$(x≠2)與方程y+1=k(x-2)(x∈R)不表示同一直線;
④,直線l過點P(x0,y0),傾斜角為90°,則其方程為x=x°;

解答 解:對于①,斜率不存在的直線無點斜式和斜截式方程,故錯;
對于②,由傾斜角與斜率的關(guān)系知,傾斜角是鈍角的直線,斜率為負數(shù),正確;
對于③,方程$k=\frac{y+1}{x-2}$(x≠2)與方程y+1=k(x-2)(x∈R)不表示同一直線,故錯;
對于④,直線l過點P(x0,y0),傾斜角為90°,則其方程為x=x0,正確;
故選:B.

點評 本題考查了命題真假的判定,涉及到了直線方程的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.把函數(shù)y=sin(2x+$\frac{π}{6}$)圖象上各點的橫坐標(biāo)縮短到原來的$\frac{1}{2}$倍(縱坐標(biāo)不變),再將圖象向右平移$\frac{π}{3}$個單位,得到函數(shù)y=g(x),那么g($\frac{π}{3}$)的值為( 。
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,已知雙曲線$C:\frac{x^2}{a^2}-{y^2}=1(a>0)$的右焦點F,點A,B分別在C的兩條漸近線上,AF⊥x軸,AB⊥OB,BF∥OA(O為坐標(biāo)原點).求雙曲線C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知平面內(nèi)的一條直線與平面的一條斜線的夾角為60°,這條直線與斜線在平面內(nèi)的射影的夾角為45°,則斜線與平面所成的角為45°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)全集U={1,2,3,4,5,6,7},B={2,4,6},則∁UB=( 。
A.{2,4,6}B.{1,3,5}C.{1,3,5,7}D.{1,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知拋物線C:y2=4x的焦點為F,準(zhǔn)線為l,若射線y=2(x-1)(x≤1)與C,l分別交于P、Q兩點,則$\frac{|PQ|}{|PF|}$=( 。
A.$\sqrt{2}$B.2C.$\sqrt{5}$D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=(2x+b)ex,F(xiàn)(x)=bx-lnx,b∈R.
(1)若b<0,且存在區(qū)間M,使f(x)和F(x)在區(qū)間M上具有相同的單調(diào)性,求b的取值范圍;
(2)若b>0,且g(x)=bx2-2x-F(x)在區(qū)間[1,e]上的最小值為-2,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.如果圓(x-a)2+(y-a)2=8上總存在兩個點到原點的距離為$\sqrt{2}$,則實數(shù)a的取值范圍是( 。
A.(-3,3)B.(-1,1)C.(-3,1)D.(-3,-1)∪(1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若點P(1,2)在以坐標(biāo)原點為圓心的圓上,則該圓在點P處的切線方程為(  )
A.x+2y-5=0B.x-2y+3=0C.2x+y-4=0D.2x-y=0

查看答案和解析>>

同步練習(xí)冊答案