【題目】在直角坐標(biāo)平面上,稱橫、縱坐標(biāo)都是有理數(shù)的點(diǎn)為有理點(diǎn).求滿足如下條件的最小正整數(shù):每一個(gè)圓周上含有個(gè)有理點(diǎn)的圓,它的圓周上一定含有無窮多個(gè)有理點(diǎn).
【答案】的最小值為3
【解析】
首先證明:若一個(gè)圓的圓周含有3個(gè)有理點(diǎn),則該圓周上一定含有無窮多個(gè)有理點(diǎn).
設(shè)平面上的圓周上含有2個(gè)有理點(diǎn)(),圓心.
由于線段的垂直平分線過圓心,則
由于()都是有理數(shù),因此,上述關(guān)于的二元一次方程組的解都是有理數(shù),即是有理點(diǎn).設(shè)有理點(diǎn)的坐標(biāo)為
其中,().
則
.
故點(diǎn)()都在的圓周上,即的圓周上有無窮多個(gè)有理點(diǎn).其次,構(gòu)造一個(gè)圓周上只含有兩個(gè)有理點(diǎn)的實(shí)例..容易驗(yàn)證,都在圓周上.
若圓周上還有不同于的有理點(diǎn),
則,即.
因?yàn)樽蠖藶橛欣頂?shù),為無理數(shù),所以,.進(jìn)而.
故.這與不同于的假定矛盾.綜上所述,的最小值為3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(Ⅰ)求函數(shù)在點(diǎn)點(diǎn)處的切線方程;
(Ⅱ)當(dāng)時(shí),恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E的一個(gè)頂點(diǎn)為,焦點(diǎn)在x軸上,若橢圓的右焦點(diǎn)到直線的距離是3.
求橢圓E的方程;
設(shè)過點(diǎn)A的直線l與該橢圓交于另一點(diǎn)B,當(dāng)弦AB的長度最大時(shí),求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(Ⅰ)當(dāng)時(shí),求函數(shù)在處的切線方程;
(Ⅱ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)若函數(shù)有兩個(gè)極值點(diǎn),不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知偶函數(shù)滿足且,當(dāng)時(shí),,關(guān)于的不等式在上有且只有200個(gè)整數(shù)解,則實(shí)數(shù)的取值范圍為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(Ⅱ)當(dāng)時(shí),求證:對(duì)任意成立.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com