分析 (1)利用線面垂直的判定定理即可證明先證BD⊥面SAC,
(2)根據(jù)二面角的平面角的定義得到∠EDC是所求的二面角的平面角,利用Rt△SAC與Rt△EDC相似求出∠EDC即可.
解答 證明:(1)由于SB=BC,且E是SC的中點,因此BE是等腰三角形SBC的底邊SC的中線,所以SC⊥BE.
又已知SC⊥DE,BE∩DE=E,
∴SC⊥面BDE,
∴SC⊥BD.
又∵SA⊥底面ABC,BD在底面ABC上,
∴SA⊥BD.
而SC∩SA=S,∴BD⊥面SAC.
(2)∵DE=面SAC∩面BDE,DC=面SAC∩面BDC,
∴BD⊥DE,BD⊥DC.
∴∠EDC是所求的二面角的平面角.
∵SA⊥底面ABC,∴SA⊥AB,SA⊥AC.
設(shè)SA=a,則AB=a,BC=SB=$\sqrt{2}$a
∵AB⊥BC,∴AC=$\sqrt{3}a$,在Rt△SAC中tan∠ACS=$\frac{\sqrt{3}}{3}$
∴∠ACS=30°.
又已知DE⊥SC,所以∠EDC=60°,即所求的二面角等于60°.
點評 本題主要考查了平面與平面之間的位置關(guān)系以及二面角的求解,考查空間想象能力、運算能力和推理論證能力,利用二面角的定義找出二面角的平面角是解決本題的關(guān)鍵..
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,0] | B. | (-∞,1) | C. | (0,+∞) | D. | (1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com