10.關(guān)于x的方程22x-(m-1)2x+2=0在x∈[0,2]時(shí)有唯一解,求m取值范圍.

分析 令2x=t,在方程t2-(m-1)t+2=0在[1,4]上有唯一解,對(duì)判別式和區(qū)間端點(diǎn)值進(jìn)行討論,利用二次函數(shù)的性質(zhì)和零點(diǎn)的存在性定理得出a的范圍.

解答 解:令2x=t,則t∈[1,4],
∴方程t2-(m-1)t+2=0在[1,4]上有唯一解.
(1)若△=(m-1)2-8=0,即m=1±2$\sqrt{2}$時(shí),
若m=1+2$\sqrt{2}$,則t=$\sqrt{2}$,符合題意,
若m=1-2$\sqrt{2}$,則t=-$\sqrt{2}$,不符合題意.
(2)若△=(m-1)2-8>0,即m<1-2$\sqrt{2}$或m>1+2$\sqrt{2}$時(shí),
若t=1是方程的解,由根與系數(shù)的關(guān)系可知t=2也是方程的解,與方程在[1,4]上有唯一解矛盾;
若t=4是方程的解,由根與系數(shù)的關(guān)系可知t=$\frac{1}{2}$也是方程的解,符合題意;
此時(shí)m-1=4+$\frac{1}{2}$,∴m=$\frac{11}{2}$.
若方程的解在(1,4)上,根據(jù)零點(diǎn)的存在性定理可知(4-m)(22-4m)<0,
解得4<m<$\frac{11}{2}$.
綜上,m的取值范圍是(4,$\frac{11}{2}$]∪{1+2$\sqrt{2}$}.

點(diǎn)評(píng) 本題考查了二次函數(shù)的性質(zhì),零點(diǎn)的存在性定理,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2017屆湖北省百所重點(diǎn)校高三聯(lián)合考試數(shù)學(xué)(理)試卷(解析版) 題型:選擇題

若存在兩個(gè)正實(shí)數(shù),使得等式成立,其中為自然對(duì)數(shù)

的底數(shù),則實(shí)數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=sin($\frac{π}{4}$+x)sin($\frac{π}{4}$-x)+$\sqrt{3}$sinxcosx(x∈R).
(1)求f($\frac{π}{6}$)的值;
(2)在△ABC中,若f(A)=1,求sinB+sinC的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.若函數(shù)f(x)=loga(x-2)(a>0,a≠1)恒過(guò)定點(diǎn)A,函數(shù)g(x)=ax-2(a>0,a≠1)恒過(guò)定點(diǎn)B,則 A,B兩點(diǎn)關(guān)于(  )
A.y=x對(duì)稱(chēng)B.y=x-2對(duì)稱(chēng)C.y=-x對(duì)稱(chēng)D.y=-x-2對(duì)稱(chēng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,已知a1+2a2+3a3+…+nan=(n-1)Sn+2n(n∈N*).
(Ⅰ)求a1,a2,a3的值;
(Ⅱ)求證:數(shù)列{Sn+2}是等比數(shù)列;并數(shù)列{an}的通項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=|x+1|-|2x-2|.
(Ⅰ)求不等式f(x)≥x-1的解集;
(Ⅱ)若f(x)的最大值是m,且a,b,c均為正數(shù),a+b+c=m,求$\frac{b^2}{a}+\frac{c^2}+\frac{a^2}{c}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.直線y=k(x-3)+6必過(guò)定點(diǎn)(3,6).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=$\frac{ax}{x+1}$,函數(shù)g(x)的圖象是由y=1n$\frac{1}{x-2}$的圖象往左平移3個(gè)單位形成;令F(x)=f(x)-g(x).(I)討論函數(shù)F(x)的單調(diào)性;
(Ⅱ)證明:?n∈N*,1n(n+1)+$\frac{1-n}{{n}^{2}}$>1nn恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.某學(xué)校為了了解學(xué)生使用手機(jī)的情況,分別在高一和高二兩個(gè)年級(jí)各隨機(jī)抽取了100名學(xué)生進(jìn)行調(diào)查.如圖表是根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均使用手機(jī)時(shí)間的頻率分布直方圖和頻數(shù)分布表,將使用手機(jī)時(shí)間不低于80分鐘的學(xué)生稱(chēng)為“手機(jī)迷”.
高二學(xué)生日均使用手機(jī)時(shí)間的頻數(shù)分布表
時(shí)間分組頻數(shù)
[0,20)12
[20,40)20
[40,60)24
[60,80)26
[80,100)14
[100,120)4
(1)將頻率視為概率,估計(jì)哪個(gè)年級(jí)的學(xué)生是“手機(jī)迷”的概率大?請(qǐng)說(shuō)明理由.
(2)在高一的抽查中,已知隨機(jī)抽到的女生共有55名,其中10名為“手機(jī)迷”.根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此資料判斷是否有90%的把握認(rèn)為“手機(jī)迷”與性別有關(guān)?說(shuō)明理由.
非手機(jī)迷手機(jī)迷合計(jì)
合計(jì)
附:隨機(jī)變量${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$(其中n=a+b+c+d為樣本總量).

查看答案和解析>>

同步練習(xí)冊(cè)答案