x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | 50 | 70 |
分析 (1)首先求出x,y的平均數(shù),利用最小二乘法做出線性回歸方程的系數(shù),根據(jù)樣本中心點(diǎn)滿足線性回歸方程,代入已知數(shù)據(jù)求出a的值,寫出線性回歸方程.
(2)分別求出在已有的五組數(shù)據(jù)中任意抽取兩組的情況總數(shù),及至少有一組數(shù)據(jù)其預(yù)測(cè)值與實(shí)際值之差的絕對(duì)值不超過5的情況數(shù),代入古典概型概率計(jì)算公式,可得答案.
解答 解:(1)由題意得$\overline{x}=\frac{2+4+5+6+8}{5}=5$,$\overline{y}=\frac{30+40+50+60+70}{5}=50$,$b=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n•\bar x•\bar y}}{{\sum_{i=1}^n{x_i^2}-n•{{\bar x}^2}}}=\frac{60+160+300+300+560-5×5×50}{4+16+25+36+64-5×25}=\frac{130}{20}=\frac{13}{2}$,
$a=\bar y-b\overline{x}=25-\frac{13}{2}×5=\frac{35}{2}$,
所求回歸直線方程為$\hat y=\frac{13}{2}x+\frac{35}{2}$;
(2)基本事件:(30,40),(30,60),(30,50),(30,70),
(40,60),(40,50),(40,70),(60,50),(60,70),(50,70)共10個(gè)
兩組數(shù)據(jù)其預(yù)測(cè)值與實(shí)際值之差的絕對(duì)值都超過5:(60,50)
所以至少有一組數(shù)據(jù)其預(yù)測(cè)值與實(shí)際值之差的絕對(duì)值不超過5的概率為${P}=1-\frac{C_2^2}{C_5^2}=1-\frac{1}{10}=\frac{9}{10}$.
點(diǎn)評(píng) 本題考查回歸分析的初步應(yīng)用,考查求線性回歸方程,考查預(yù)報(bào)y的值,是一個(gè)綜合題目,解此類題,關(guān)鍵是理解線性回歸分析意義.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①②③ | B. | ②③④ | C. | ①②④ | D. | ③④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4n+2 | B. | 4n+4 | C. | 4n+6 | D. | 4n+8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 一 | B. | 二 | C. | 三 | D. | 四 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 34 | B. | 43 | C. | 24 | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com