【題目】已知命題p:x∈R,x2+x+1>0,命題q:x∈Q,x2=3,則下列命題中是真命題的是(
A.p∧q
B.¬p∨q
C.¬p∧¬q
D.¬p∨¬q

【答案】D
【解析】解:∵命題p:x∈R,x2+x+1>0,
x∈R,x2+x+1= >0,
∴命題p是真命題;
∵命題q:x∈Q,x2=3,
x2=3時(shí), ,
∴命題q是假命題;
根據(jù)復(fù)合命題真假判定,
p∧q、¬p∨q、¬p∧¬q是假命題,A、B、C錯(cuò),
¬p∨¬q是真命題,D正確.
故選:D.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解復(fù)合命題的真假的相關(guān)知識(shí),掌握“或”、 “且”、 “非”的真值判斷:“非p”形式復(fù)合命題的真假與F的真假相反;“p且q”形式復(fù)合命題當(dāng)P與q同為真時(shí)為真,其他情況時(shí)為假;“p或q”形式復(fù)合命題當(dāng)p與q同為假時(shí)為假,其他情況時(shí)為真.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間和極值;

(2)是否存在實(shí)數(shù),使得函數(shù)上的最小值為1?若存在,求出的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在圓內(nèi)接△ABC,A,B,C所對(duì)的邊分別為a,b,c,滿足acosC+ccosA=2bcosB.
(1)求B的大小;
(2)若點(diǎn)D是劣弧 上一點(diǎn),AB=3,BC=2,AD=1,求四邊形ABCD的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax2+(a﹣2)x﹣2,a∈R.
(1)若關(guān)于x的不等式f(x)≤0的解集為[﹣1,2],求實(shí)數(shù)a的值;
(2)當(dāng)a<0時(shí),解關(guān)于x的不等式f(x)≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,將邊長為2的正六邊形ABCDEF沿對(duì)角線BE翻折,連接AC、FD,形成如圖所示的多面體,且,(1)證明:平面ABEF平面BCDE; (2)求DE與平面ABC所成角的正弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三次函數(shù)的導(dǎo)函數(shù) , 為實(shí)數(shù).

(1)若曲線在點(diǎn)處切線的斜率為12,求的值;

2)若在區(qū)間上的最小值,最大值分別為1,且,求函數(shù)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中, , , 的面積為.

Ⅰ)求的長;

Ⅱ)若函數(shù)的圖象經(jīng)過三點(diǎn),其中的圖象與軸相鄰的兩個(gè)交點(diǎn),求函數(shù)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx= ,其中a0

)若a=1,求曲線y=fx)在點(diǎn)(2,f2))處的切線方程;

)若在區(qū)間上,fx)>0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】圍建一個(gè)面積為360m2的矩形場(chǎng)地,要求矩形場(chǎng)地的一面利用舊墻(利用舊墻需維修),其它三面圍墻要新建,在舊墻的對(duì)面的新墻上要留一個(gè)寬度為2m的進(jìn)出口,已知舊墻的維修費(fèi)用為45元/m,新墻的造價(jià)為180元/m,設(shè)利用的舊墻的長度為x(單位:m),修建此矩形場(chǎng)地圍墻的總費(fèi)用為y(單位:元). (Ⅰ)將y表示為x的函數(shù):
(Ⅱ)試確定x,使修建此矩形場(chǎng)地圍墻的總費(fèi)用最小,并求出最小總費(fèi)用.

查看答案和解析>>

同步練習(xí)冊(cè)答案