【題目】如圖,在圓內(nèi)接△ABC,A,B,C所對的邊分別為a,b,c,滿足acosC+ccosA=2bcosB.
(1)求B的大。
(2)若點D是劣弧 上一點,AB=3,BC=2,AD=1,求四邊形ABCD的面積.

【答案】
(1)解:∵acosC+ccosA=2bcosB.

由正弦定理,可得sinAcosC+sinAcosA=2sinBcosB.

得sinB=2sinBcosB.

∵0<B<π,sinB≠0,

∴cosB= ,

即B=


(2)解:在△ABC中,AB=3,BC=2,B=

由余弦定理,cos = ,

可得:AC=

在△ADC中,AC= ,AD=1,ABCD在圓上,

∵B=

∴∠ADC=

由余弦定理,cos = =

解得:DC=2

四邊形ABCD的面積S=SABC+SADC= ADDCsin + ABBCsin =2


【解析】(1)根據(jù)正弦定理化簡即可.(2)在△ABC,利用余弦定理求出AC,已知B,可得∠ADC,再余弦定理求出DC,即可△ABC和△ADC面積,可得四邊形ABCD的面積.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC的三角A,B,C的對邊分別為a,b,c滿足(2b﹣c)cosA=acosC.
(1)求A的值;
(2)若a=2,求△ABC面積的最大值;
(3)若a=2,求△ABC周長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的離心率 ,過點A(0,﹣b)和B(a,0)的直線與原點的距離為
(1)求橢圓的方程;
(2)已知定點E(﹣1,0),若直線y=kx+2(k≠0)與橢圓交于C、D兩點,問:是否存在k的值,使以CD為直徑的圓過E點?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某班同學(xué)利用寒假進(jìn)行社會實踐活動,對歲的人群隨機(jī)抽取人進(jìn)行了一次生活習(xí)慣是

否符合低碳觀念的調(diào)查,若生活習(xí)慣符合低碳觀念的稱為低碳族,否則稱為非低碳族,得

到如下統(tǒng)計表和各年齡段人數(shù)頻率分布直方圖:

(I)補(bǔ)全頻率分布直方圖并求、、的值;

(II)從年齡段在低碳族中采用分層抽樣法抽取人參加戶外低碳體驗活動,其中選取人作為領(lǐng)隊,求選取的名領(lǐng)隊中恰有1人年齡在歲的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足a1=1,且an+1﹣an=2n , n∈N* , 若 +19≤3n對任意n∈N*都成立,則實數(shù)λ的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: 的左右焦點分別為F1 , F2 , 點P為橢圓C上的任意一點,若以F1 , F2 , P三點為頂點的三角形一定不可能為等腰鈍角三角形,則橢圓C的離心率的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C:x2=8y.AB是拋物線C的動弦,且AB過F(0,2),分別以A,B為切點作軌跡C的切線,設(shè)兩切線交點為Q,證明:AQ⊥BQ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題p:x∈R,x2+x+1>0,命題q:x∈Q,x2=3,則下列命題中是真命題的是(
A.p∧q
B.¬p∨q
C.¬p∧¬q
D.¬p∨¬q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市的教育主管部門對所管轄的學(xué)校進(jìn)行年終督導(dǎo)評估,為了解某學(xué)校師生對學(xué)校教學(xué)管理的滿意度,分別從教師和不同年級的同學(xué)中隨機(jī)抽取若干師生,進(jìn)行評分(滿分100分),繪制如下頻率分布直方圖(分組區(qū)間為 , , , ),并將分?jǐn)?shù)從低到高分為四個等級:

滿意度評分

滿意度等級

不滿意

基本滿意

滿意

非常滿意

已知滿意度等級為基本滿意的有340人.

(1)求表中的值及不滿意的人數(shù);

(2)在等級為不滿意的師生中,老師占,現(xiàn)從該等級師生中按分層抽樣抽取12人了解不滿意的原因,并從中抽取3人擔(dān)任整改督導(dǎo)員,記為老師整改督導(dǎo)員的人數(shù),求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案