17.若$f(x)=\sqrt{k{x^2}-6kx+k+8}$的定義域?yàn)镽,則實(shí)數(shù)k的取值范圍是( 。
A.{k|0<k≤1}B.{k|k<0或k>1}C.{k|0≤k≤1}D.{k|k>1}

分析 把$f(x)=\sqrt{k{x^2}-6kx+k+8}$的定義域?yàn)镽,掌握kx2-6kx+k+8≥0對(duì)任意實(shí)數(shù)x恒成立,然后對(duì)k分類求解得答案.

解答 解:∵$f(x)=\sqrt{k{x^2}-6kx+k+8}$的定義域?yàn)镽,
∴kx2-6kx+k+8≥0對(duì)任意實(shí)數(shù)x恒成立,
若k=0,不等式化為8≥0恒成立;
若k≠0,則$\left\{\begin{array}{l}{k>0}\\{36{k}^{2}-4k(k+8)≤0}\end{array}\right.$,解得0<k≤1.
∴實(shí)數(shù)k的取值范圍是{k|0≤k≤1}.
故選:C.

點(diǎn)評(píng) 本題考查函數(shù)的定義域及其求法,考查了數(shù)學(xué)轉(zhuǎn)化思想方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知f(x)=ax3+bsinx+100tanx+1,且f(1)=5,f(-1)的值為-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.直線x+my+m=0,將x2-6x+y2+4y+5=0分成1:2兩段弧,則m為( 。
A.4或-4B.3或-5C.2或-6D.1或-7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)y=$\frac{x-1}{x-a}$在區(qū)間[3,+∞)上是減函數(shù),則a的取值范圍是( 。
A.[1,3)B.(1,3)C.(1,3]D.[1,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如果{an}為遞增數(shù)列,則{an}的通項(xiàng)公式可以為( 。
A.sn=2n2+nB.an=-n2-3n+1C.an=$\frac{1}{{2}^{n}}$D.${s_n}=-2{n^2}+n$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知AB是圓C:(x+2)2+(y-l)2=$\frac{2}{5}$的一條直徑,若楠圓x2+4y2=4b2(b∈R)經(jīng)過 A、B 兩點(diǎn),則該橢圓的方程是$\frac{{x}^{2}}{\frac{216}{25}}+\frac{{y}^{2}}{\frac{54}{25}}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=\sqrt{2}cosα\\ y=sinα\end{array}\right.$(α為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸的正半軸為級(jí)軸,建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程ρsin(θ+$\frac{π}{4}$)=4$\sqrt{2}$
(I)求曲線C1的普通方程和曲線C2的直角坐標(biāo)方程;
(Ⅱ)設(shè)P為曲線C1上的動(dòng)點(diǎn),求點(diǎn)P到曲線C2上的距離的最小值的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知平面非零向量$\overrightarrow{a}$,$\overrightarrow$滿足:|$\overrightarrow{a}$|=|$\overrightarrow$|=|$\overrightarrow{a}$-$\overrightarrow$|,若對(duì)任意平面向量$\overrightarrow{c}$,都有($\overrightarrow{c}$-$\overrightarrow{a}$)•(2$\overrightarrow{c}$-$\overrightarrow$)≥m$\overrightarrow{a}$•$\overrightarrow$恒成立,則實(shí)數(shù)m的取值范圍是(-∞,-$\frac{3}{4}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.過P(2,0)作傾斜角為α的直線l與曲線E$\left\{\begin{array}{l}{x=cosθ}\\{y=\frac{\sqrt{2}}{2}sinθ}\end{array}\right.$(θ為參數(shù))交于A,B兩點(diǎn).
(Ⅰ)求曲線E的普通方程及l(fā)的參數(shù)方程;
(Ⅱ)求sinα的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案