【題目】已知定義在區(qū)間[0,1]上的函數(shù)y=f(x)的圖象如圖所示.對(duì)滿(mǎn)足0<x1<x2<1的任意x1,x2,給出下列結(jié)論:
①f(x1)-f(x2)>x1-x2;
②f(x1)-f(x2)<x1-x2;
③x2f(x1)>x1f(x2);
④.
其中正確結(jié)論的序號(hào)是________.
【答案】③④
【解析】
根據(jù)題意可作出函數(shù)的圖象,根據(jù)直線(xiàn)的斜率的幾何意義,利用數(shù)形結(jié)合的思想
研究函數(shù)的單調(diào)性與最值即可得到結(jié)論.
由于k=表示函數(shù)圖象上兩點(diǎn)(x1,f(x1)),(x2,f(x2))連線(xiàn)的斜率,當(dāng)x1和x2都接近于零時(shí),由圖象可知k>1,
當(dāng)x1和x2都接近于1時(shí),k<1,
故①②均不正確;
當(dāng)0<x1<x2<1時(shí),根據(jù)斜率關(guān)系有>,
即x2f(x1)>x1f(x2),所以③正確;
在區(qū)間(0,1)上任取兩點(diǎn)A、B,其橫坐標(biāo)分別為x1,x2,過(guò)A、B分別作x軸的垂線(xiàn),
與曲線(xiàn)交于點(diǎn)M、N,取AB中點(diǎn)C,過(guò)C作x軸的垂線(xiàn),
與曲線(xiàn)交點(diǎn)為P,與線(xiàn)段MN交點(diǎn)為Q,
則=CQ,f()=CP,
由圖象易知CP>CQ,
故有<f(),所以④正確.故答案為③④.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間和極值;
(2)設(shè)定義在上的函數(shù)的最大值為,最小值為,且,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年底,北京2022年冬奧組委會(huì)啟動(dòng)志愿者全球招募,僅一個(gè)月內(nèi)報(bào)名人數(shù)便突破60萬(wàn),其中青年學(xué)生約有50萬(wàn)人.現(xiàn)從這50萬(wàn)青年學(xué)生志愿者中,按男女分層抽樣隨機(jī)選取20人進(jìn)行英語(yǔ)水平測(cè)試,所得成績(jī)(單位:分)統(tǒng)計(jì)結(jié)果用莖葉圖記錄如下:
(Ⅰ)試估計(jì)在這50萬(wàn)青年學(xué)生志愿者中,英語(yǔ)測(cè)試成績(jī)?cè)?/span>80分以上的女生人數(shù);
(Ⅱ)從選出的8名男生中隨機(jī)抽取2人,記其中測(cè)試成績(jī)?cè)?/span>70分以上的人數(shù)為X,求的分布列和數(shù)學(xué)期望;
(Ⅲ)為便于聯(lián)絡(luò),現(xiàn)將所有的青年學(xué)生志愿者隨機(jī)分成若干組(每組人數(shù)不少于5000),并在每組中隨機(jī)選取個(gè)人作為聯(lián)絡(luò)員,要求每組的聯(lián)絡(luò)員中至少有1人的英語(yǔ)測(cè)試成績(jī)?cè)?/span>70分以上的概率大于90%.根據(jù)圖表中數(shù)據(jù),以頻率作為概率,給出的最小值.(結(jié)論不要求證明)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一次考試結(jié)束后,隨機(jī)抽查了某校高三(1)班5名同學(xué)的數(shù)學(xué)與物理成績(jī)?nèi)缦卤恚?/span>
學(xué)生 | |||||
數(shù)學(xué) | 89 | 91 | 93 | 95 | 97 |
物理 | 87 | 89 | 89 | 92 | 93 |
(Ⅰ)分別求這5名同學(xué)數(shù)學(xué)與物理成績(jī)的平均分與方差,并估計(jì)該班數(shù)學(xué)與物理成績(jī)那科更穩(wěn)定;
(Ⅱ)從以上5名同學(xué)中選2人參加一項(xiàng)活動(dòng),求選中的學(xué)生中至少有一個(gè)物理成績(jī)高于90分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),,其中.
(1)當(dāng)時(shí),求的單調(diào)區(qū)間;
(2)若存在,使得不等式成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若曲線(xiàn)在處的切線(xiàn)與軸平行,求;
(2)已知在上的最大值不小于,求的取值范圍;
(3)寫(xiě)出所有可能的零點(diǎn)個(gè)數(shù)及相應(yīng)的的取值范圍.(請(qǐng)直接寫(xiě)出結(jié)論)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在等腰直角中,,,點(diǎn)、分別是、的中點(diǎn).現(xiàn)沿邊折起成如圖四棱錐,為中點(diǎn).
(1)證明:面;
(2)當(dāng)時(shí),求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知甲盒內(nèi)有大小相同的1個(gè)紅球和3個(gè)黑球,乙盒內(nèi)有大小相同的3個(gè)紅球和3個(gè)黑球,現(xiàn)從甲、乙兩個(gè)盒內(nèi)各任取2個(gè)球。
(1)求取出的4個(gè)球中沒(méi)有紅球的概率;
(2)求取出的4個(gè)球中恰有1個(gè)紅球的概率;
(3)設(shè)為取出的4個(gè)球中紅球的個(gè)數(shù),求的分布列和數(shù)學(xué)期望。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,由直三棱柱和四棱錐構(gòu)成的幾何體中,,平面平面
(I)求證:;
(II)若M為中點(diǎn),求證:平面;
(III)在線(xiàn)段BC上(含端點(diǎn))是否存在點(diǎn)P,使直線(xiàn)DP與平面所成的角為?若存在,求得值,若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com