用數(shù)字0,1,2,3,4組成沒(méi)有重復(fù)數(shù)字的四位數(shù)中,偶數(shù)的個(gè)數(shù)是
 
考點(diǎn):計(jì)數(shù)原理的應(yīng)用
專題:排列組合
分析:根據(jù)題意,分析可得四位數(shù)的個(gè)位數(shù)字為0或2、進(jìn)而分2種情況討論,①個(gè)位是0,②個(gè)位是2,由排列數(shù)公式計(jì)算得到每種情況下的四位數(shù)數(shù)目,最后由分類計(jì)數(shù)原理計(jì)算可得答案
解答: 解:根據(jù)題意,要求組成的是無(wú)重復(fù)數(shù)字的四位偶數(shù),則個(gè)位數(shù)字為0或2或4
分2種情況討論,
①當(dāng)個(gè)位是0時(shí),則其它三位從剩余的4個(gè)中任取3個(gè)排列,有A43=24種;
②當(dāng)個(gè)位是2或4時(shí),先排個(gè)位數(shù)字,再排千位數(shù)字,最后排中間兩位數(shù)字,有A21A31A32=36種,
綜合可得,共有24+36=60個(gè)無(wú)重復(fù)數(shù)字的四位偶數(shù),
故答案為:60.
點(diǎn)評(píng):本題考查分類計(jì)數(shù)原理的應(yīng)用,解題時(shí)要注意數(shù)字0的特殊性,進(jìn)而分2種情況進(jìn)行討論,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
-
1
3
x+
1
6
,x∈[0,
1
2
]
2x3
x+1
,x∈(
1
2
,1]
,g(x)=asin(
π
6
x
)-2a+2(a>0,x∈[0,1]).若a∈[
1
2
,1].則( 。
A、?x1,x2∈[0,1],f(x1)=g(x2
B、?x1∈[0,1],?x2∈[0,1],f(x1)=g(x2
C、?x1,x2∈[0,1],f(x1)≥g(x2
D、?x1∈[0,1],?x2∈[0,1],f(x1)≥g(x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={1,m2+1},B={2,4},則“m=
3
”是“A∩B={4}”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=ex(mx2+x+1),且曲線y=f(x)在x=1處的切線與x軸平行.
(1)求m的值及f(x)的極值;
(2)證明:當(dāng)α,β∈[0,
π
2
]時(shí),f(cosα)-f(sinβ)≤e-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

《中國(guó)好歌曲》的五位評(píng)委劉歡、楊坤、周華健、蔡健雅、羽•泉組合給一位歌手給出的評(píng)分分別是:x1=18,x2=19,x3=20,x4=21,x5=22,現(xiàn)將這五個(gè)數(shù)據(jù)依次輸入下面程序框進(jìn)行計(jì)算,則輸出的S值及其統(tǒng)計(jì)意義分別是( 。
A、S=2,即5個(gè)數(shù)據(jù)的方差為2
B、S=2,即5個(gè)數(shù)據(jù)的標(biāo)準(zhǔn)差為2
C、S=10,即5個(gè)數(shù)據(jù)的方差為10
D、S=10,即5個(gè)數(shù)據(jù)的標(biāo)準(zhǔn)差為10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
|x+1|+|x-a|-2
(a∈R)

(1)若a=3,解不等式f(x)≥2;
(2)若f(x)的定義域?yàn)镽,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A、
3
B、
3
C、8-
3
D、8-
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列結(jié)論中正確的是
 

①命題“若α=
π
4
,則tanα=1”的逆否命題是“若tanα≠1,則α≠
π
4
“;
②從正方體的八個(gè)頂點(diǎn)中任取三個(gè)點(diǎn)為頂點(diǎn)作三角形,其中直角三角形的個(gè)數(shù)為48;
③已知|
a
|=|
b
|=1,向量
a
b
的夾角為120°,且(
a
+
b
)⊥(
a
+t
b
),則實(shí)數(shù)t的值為-1;
④線性相關(guān)系數(shù)r的絕對(duì)值越接近于1,表明兩個(gè)變量線性相關(guān)程度越弱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知矩陣A=
30
2a
,A的逆矩陣A-1=
1
3
0
b1

(1)求a,b的值;  
(2)求A的特征值.

查看答案和解析>>

同步練習(xí)冊(cè)答案