如圖,已知正方體,分別為各個(gè)面的對(duì)角線;
(1)求證:;
(2)求異面直線所成的角.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
在如圖所示的多面體ABCDE中,AB⊥平面ACD,DE⊥平面ACD,
且AC=AD=CD=DE=2,AB=1.
(Ⅰ)請(qǐng)?jiān)诰段CE上找到點(diǎn)F的位置,使得恰有直線BF∥平面ACD,并證明這一事實(shí);
(Ⅱ)求多面體ABCDE的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四邊形ABCD中,AB⊥AD,AD∥BC,AD=6,BC=4,AB=2,E、F分別在BC、AD上,EF∥AB.現(xiàn)將四邊形ABEF沿EF折起,使得平面ABEF平面EFDC.
(Ⅰ) 當(dāng),是否在折疊后的AD上存在一點(diǎn),且,使得CP∥平面ABEF?若存在,求出的值;若不存在,說明理由;
(Ⅱ) 設(shè)BE=x,問當(dāng)x為何值時(shí),三棱錐ACDF的體積有最大值?并求出這個(gè)最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,AE⊥平面ABC,AE∥BD,AB=BC=CA=BD=2AE,F(xiàn)為CD中點(diǎn).
(Ⅰ)求證:EF⊥平面BCD;
(Ⅱ)求二面角C-DE-A的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖四棱錐E—ABCD中,底面ABCD是平行四邊形!螦BC=45°,BE=BC= EA=EC=6,M為EC中點(diǎn),平面BCE⊥平面ACE,AE⊥EB
(I)求證:AE⊥BC (II)求四棱錐E—ABCD體積
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在三棱柱ABC-A1B1C1中,側(cè)面ABB1A1為矩形,AB=1,AA1=,D為AA1中點(diǎn),BD與AB1交于點(diǎn)O,CO丄側(cè)面ABB1A1.
(Ⅰ)證明:BC丄AB1;
(Ⅱ)若OC=OA,求二面角C1-BD-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知菱形所在平面與直角梯形所在平面互相垂直,,點(diǎn),分別是線段,的中點(diǎn).
(I)求證:平面 平面;
(Ⅱ)點(diǎn)在直線上,且//平面,求平面與平面所成角的余弦值。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com