20.已知O是△ABC所在平面內(nèi)一點(diǎn),若對(duì)任意k∈R,恒有|$\overrightarrow{OA}$-$\overrightarrow{OB}$-k$\overrightarrow{BC}$|≥|$\overrightarrow{AO}$-$\overrightarrow{CO}$|,則△ABC一定是( 。
A.直角三角形B.鈍角三角形C.銳角三角形D.不確定

分析 運(yùn)用兩邊平方,結(jié)合向量的平方即為模的平方,設(shè)△ABC的三個(gè)內(nèi)角A,B,C所對(duì)的邊為a,b,c,可得k2a2-2kcacosB+c2-b2≥0,運(yùn)用判別式小于等于0,化簡(jiǎn)整理,結(jié)合正弦定理和正弦函數(shù)的值域,可得三角形的形狀.

解答 解:|$\overrightarrow{OA}$-$\overrightarrow{OB}$-k$\overrightarrow{BC}$|≥|$\overrightarrow{AO}$-$\overrightarrow{CO}$|,
即為|$\overrightarrow{BA}$-k$\overrightarrow{BC}$|≥|$\overrightarrow{AC}$|,
兩邊平方可得,$\overrightarrow{BA}$2+k2$\overrightarrow{BC}$2-2k$\overrightarrow{BA}$•$\overrightarrow{BC}$≥$\overrightarrow{AC}$2,
設(shè)△ABC的三個(gè)內(nèi)角A,B,C所對(duì)的邊為a,b,c,
即有c2+k2a2-2kcacosB≥b2,
即k2a2-2kcacosB+c2-b2≥0,
由題意可得△=4c2a2cos2B-4a2(c2-b2)≤0,
化為b2≤c2-c2cos2B,
即為b≤csinB,
由正弦定理可得b≤bsinC,
則sinC≥1,但sinC≤1,則sinC=1,可得C=90°.
即三角形ABC為直角三角形.
故選:A.

點(diǎn)評(píng) 本題考查向量不等式恒成立問題的解法,考查三角形的形狀判斷和正弦定理的運(yùn)用,運(yùn)用向量的平方即為模的平方,以及二次不等式恒成立問題的解法是解題的關(guān)鍵,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.某組合體的三視圖所示,則該組合體的體積為$\frac{3\sqrt{3}+4π}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.四邊形ABCD是菱形,ACEF是矩形,平面ACEF⊥平面ABCD,AB=2AF=2,∠BAD=60°,G是BE的中點(diǎn).
(Ⅰ)證明:CG∥平面BDF
(Ⅱ)求二面角E-BF-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.定義$\frac{n}{{p}_{1}+{p}_{2}+…+{p}_{n}}$為n個(gè)正數(shù)p1,p2…,pn的“均倒數(shù)”.若數(shù)列{an}的前n項(xiàng)的“均倒數(shù)”為$\frac{1}{3n+1}$,又bn=$\frac{{a}_{n}+2}{6}$,則$\frac{1}{_{1}_{2}}$+$\frac{1}{_{2}_{3}}$+…+$\frac{1}{_{9}_{10}}$=( 。
A.$\frac{1}{11}$B.$\frac{10}{11}$C.$\frac{9}{10}$D.$\frac{11}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=2sinωxcosωx+2$\sqrt{3}$sin2ωx-$\sqrt{3}$(ω>0)的最小正周期為π
(1)求函數(shù)f(x)的單調(diào)減區(qū)間;
(2)將函數(shù)f(x)的圖象向左平移$\frac{π}{6}$個(gè)單位,再向上平移1個(gè)單位,得到y(tǒng)=g(x)的圖象,若y=g(x)在[0,b]上至少含有8個(gè)零點(diǎn),求b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知傾斜角為θ的直線l與直線m:x-2y+3=0平行,則sin2θ=( 。
A.$\frac{5}{4}$B.$\frac{4}{5}$C.$-\frac{4}{5}$D.$-\frac{5}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知實(shí)數(shù)x,y滿足不等式組$\left\{\begin{array}{l}x-y+2≥0\\ x+y-4≥0\\ 2x-y-5≤0\end{array}\right.$,則$\frac{{{{(x-y)}^2}}}{xy}$的取值范圍是$[0,\frac{4}{3}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知等差數(shù)列{an}中,a1=29,S10=S20,則這個(gè)數(shù)列的前15項(xiàng)和最大,最大值為225.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.過點(diǎn)P(1,1)作直線l,分別交x,y正半軸于A,B兩點(diǎn).
(1)若直線l與直線x-3y+1=0垂直,求直線l的方程;
(2)若直線l在y軸上的截距是直線l在x軸上截距的2倍,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案