分析 (1)利用三角恒等變換化簡函數(shù)f(x)的解析式,再利用正弦函數(shù)的單調(diào)性求得函數(shù)f(x)的單調(diào)減區(qū)間.
(2)利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律求得g(x)的解析式,再根據(jù)g(x)在[0,b]上至少含有8個(gè)零點(diǎn),求得b的最小值.
解答 解:(1)∵函數(shù)f(x)=2sinωxcosωx+2$\sqrt{3}$sin2ωx-$\sqrt{3}$=sin2ωx-$\sqrt{3}$cos2ωx=2sin(2ωx-$\frac{π}{3}$)(ω>0)
的最小正周期為$\frac{2π}{2ω}$=π,∴ω=1,f(x)=2sin(2x-$\frac{π}{3}$).
令2kπ+$\frac{π}{2}$≤2x-$\frac{π}{3}$≤2kπ+$\frac{3π}{2}$,求得kπ+$\frac{5π}{12}$≤x≤kπ+$\frac{11π}{12}$,故函數(shù)的減區(qū)間為[kπ+$\frac{5π}{12}$,kπ+$\frac{11π}{12}$],k∈Z.
(2)將函數(shù)f(x)的圖象向左平移$\frac{π}{6}$個(gè)單位,再向上平移1個(gè)單位,得到y(tǒng)=g(x)=2sin(2x+$\frac{π}{3}$-$\frac{π}{3}$)+1=2sin2x+1的圖象,
若y=g(x)在[0,b]上至少含有8個(gè)零點(diǎn),
令g(x)=0,求得sin2x=-$\frac{1}{2}$,即2x=2kπ+$\frac{7π}{6}$,或 2x=2kπ+$\frac{11π}{6}$ k∈Z,
即x=kπ+$\frac{7π}{12}$,或x=kπ+$\frac{11π}{12}$,
故k=0,1,2,3,故b的最小值即函數(shù)g(x)的第8個(gè)零點(diǎn)(從小到大排列),即 3π+$\frac{11π}{12}$=$\frac{47π}{12}$.
點(diǎn)評(píng) 本題主要考查三角恒等變換,正弦函數(shù)的單調(diào)性、零點(diǎn),函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 16+$\frac{4}{3}$π | B. | 38+4π | C. | 40+π | D. | 40+4π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 直角三角形 | B. | 鈍角三角形 | C. | 銳角三角形 | D. | 不確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | m⊥n | B. | m,n成60°角 | C. | m∥n | D. | m,n成30°角 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\frac{5}{3}$ | C. | 3 | D. | 5 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com