20.已知數(shù)列{an}滿足a1=30,且an+1=an+2n,n∈N*,那么a45=2010.

分析 an+1=an+2n,n∈N*,即an+1-an=2n,利用“累加求和”方法、等差數(shù)列的求和公式即可得出.

解答 解:an+1=an+2n,n∈N*,即an+1-an=2n,
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=2(n-1)+2(n-2)+…+2×1+30
=2×$\frac{n(n-1)}{2}$+30
=n2-n+30.
那么a45=452-45+30
=2010.
故答案為:2010.

點(diǎn)評(píng) 本題考查了“累加求和”方法、等差數(shù)列的求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.從4,5,6,7,8這5個(gè)數(shù)中任取兩個(gè)數(shù),則所取兩個(gè)數(shù)之積能被3整除概率是( 。
A.$\frac{2}{5}$B.$\frac{3}{10}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.命題:?x∈R,cos x<2的否定是?x∈R,cosx≥2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.如果函數(shù)y=2cos(3x+φ)的圖象關(guān)于點(diǎn)$(\frac{π}{3},0)$成中心對(duì)稱,那么|φ|的最小值為( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.曲線f(x)=x3+x-2在點(diǎn)P處的切線平行于直線4x-y-1=0,則點(diǎn)P的坐標(biāo)為( 。
A.(1,0)B.(2,8)C.(1,0)或(-1,-4)D.(2,8)或(-1,-4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知A(0,2,3),B(-2,1,6),C(1,-1,5),若|$\overrightarrow{a}$|=$\sqrt{3}$,且$\overrightarrow{a}$⊥$\overrightarrow{AB}$,$\overrightarrow{a}$⊥$\overrightarrow{AC}$,則向量$\overrightarrow{a}$的坐標(biāo)為(1,1,1)或(-1,-1,-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知不等式組表示的平面區(qū)域$\left\{\begin{array}{l}x+4y≥4\\ x+y≤4\\ x≥0\end{array}\right.$為D,點(diǎn)集T={(x0,y0)∈D|x0,y0∈Z.(x0,y0)是z=x+y在D上取得最大值或最小值的點(diǎn)}則T中的點(diǎn)的縱坐標(biāo)之和為(  )
A.12B.5C.10D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若向量$\overrightarrow{a}$=(1,-2),向量$\overrightarrow$=(x,1),且$\overrightarrow{a}$⊥$\overrightarrow$,則x=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.按照如圖的程序框圖執(zhí)行,若輸出結(jié)果為31,則M處條件可以是(  )
A.k>32B.k≥16C.k≥32D.k<16

查看答案和解析>>

同步練習(xí)冊(cè)答案