已知各項(xiàng)都不相等的等差數(shù)列的前6項(xiàng)和為60,且的等比中項(xiàng).
( I ) 求數(shù)列的通項(xiàng)公式;
(II) 若數(shù)列滿(mǎn)足,且,求數(shù)列的前項(xiàng)和.

(1)(2)

解析試題分析:(1)根據(jù)已知條件列出關(guān)于首項(xiàng)a1和公差d的方程組,解出首項(xiàng)a1和公差d的值,即可求出等差數(shù)列的通項(xiàng)公式.(2)由可得,所以可推出,即,最后利用裂項(xiàng)法求解即可.
試題解析:解:(Ⅰ)設(shè)等差數(shù)列的公差為(),
   得  ∴ 
(Ⅱ)由,  ∴,
 
 
.
 ∴  
 
考點(diǎn):1.等差數(shù)列的通項(xiàng)公式和前n項(xiàng)和;2.等比中項(xiàng);3.數(shù)列的遞推公式和前n項(xiàng)和的求法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

數(shù)列是遞增的等差數(shù)列,且,
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和的最小值;
(3)求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列具有性質(zhì):①為正數(shù);②對(duì)于任意的正整數(shù),當(dāng)為偶數(shù)時(shí),;當(dāng)為奇數(shù)時(shí),
(1)若,求數(shù)列的通項(xiàng)公式;
(2)若成等差數(shù)列,求的值;
(3)設(shè),數(shù)列的前項(xiàng)和為,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列中,且點(diǎn)在直線(xiàn)上。
(1)求數(shù)列的通項(xiàng)公式;
(2)若函數(shù)求函數(shù)的最小值;
(3)設(shè)表示數(shù)列的前項(xiàng)和.試問(wèn):是否存在關(guān)于的整式,使得對(duì)于一切不小于2的自然數(shù)恒成立?若存在,寫(xiě)出的解析式,并加以證明;若不存在,試說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知等差數(shù)列中,.
(I)求數(shù)列的通項(xiàng)公式;
(II)若數(shù)列的前項(xiàng)和,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

數(shù)列{an}中,a1=1,當(dāng)時(shí),其前n項(xiàng)和滿(mǎn)足.
(Ⅰ)求Sn的表達(dá)式;
(Ⅱ)設(shè),數(shù)列{bn}的前n項(xiàng)和為,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列中,,,數(shù)列中,,且點(diǎn)在直線(xiàn)上.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)求數(shù)列的通項(xiàng)公式;
(Ⅲ)若,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)等比數(shù)列的首項(xiàng)為,公比為為正整數(shù)),且滿(mǎn)足的等差中項(xiàng);數(shù)列滿(mǎn)足).
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)試確定的值,使得數(shù)列為等差數(shù)列;
(Ⅲ)當(dāng)為等差數(shù)列時(shí),對(duì)每個(gè)正整數(shù),在之間插入個(gè)2,得到一個(gè)新數(shù)列. 設(shè)是數(shù)列 的前項(xiàng)和,試求滿(mǎn)足的所有正整數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知等差數(shù)列滿(mǎn)足.
(I)求數(shù)列的通項(xiàng)公式;
(II)求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊(cè)答案