已知等差數(shù)列中,.
(I)求數(shù)列的通項公式;
(II)若數(shù)列的前項和,求的值.

(I)數(shù)列的通項公式為;(II)

解析試題分析:(I)首先設(shè)等差數(shù)列的公差為,然后根據(jù)已知條件,利用等差數(shù)列的通項公式即可得到關(guān)于的方程,求出方程的解,即可得到等差數(shù)列的公差的值,根據(jù)首項和公差寫出數(shù)列的通項公式即可;(II)根據(jù)等差數(shù)列的通項公式,由首項和公差表示出等差數(shù)列的前項和的公式,由已知,得關(guān)于的方程,求出方程的解,即可得到的值,根據(jù)為正整數(shù)得到滿足題意的的值.
試題解析:(I)設(shè)等差數(shù)列的公差為,則.由,可得,解得,從而
(II)由(I)可知,所以,進(jìn)而由,可得,即,解得,又,故為所求.
考點:等差數(shù)列的通項公式及前項和的公式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知集合,對于數(shù)列.
(Ⅰ)若三項數(shù)列滿足,則這樣的數(shù)列有多少個?
(Ⅱ)若各項非零數(shù)列和新數(shù)列滿足首項,),且末項,記數(shù)列的前項和為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列是等差數(shù)列,.
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)若,求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

現(xiàn)在市面上有普通型汽車(以汽油為燃料)和電動型汽車兩種。某品牌普通型汽車車價為12萬元,第一年汽油的消費為6000元,隨著汽油價格的不斷上升,汽油的消費每年以20%的速度增長。其它費用(保險及維修費用等)第一年為5000元,以后每年遞增2000元。而電動汽車由于節(jié)能環(huán)保,越來越受到社會認(rèn)可。某品牌電動車在某市上市,車價為25萬元,購買時一次性享受國家補(bǔ)貼價6萬元和該市市政府補(bǔ)貼價4萬元。電動汽車動力不靠燃油,而靠電池。電動車使用的普通鋰電池平均使用壽命大約兩年(也即兩年需更換電池一次),電池價格為1萬元,電動汽車的其它費用每年約為5000元。
求使用年,普通型汽車的總耗資費(萬元)的表達(dá)式
(總耗資費=車價+汽油費+其它費用)
比較兩種汽車各使用10年的總耗資費用
(參考數(shù)據(jù):        

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)列的前項和為,且.
(1)求數(shù)列的通項公式;
(2)設(shè)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知各項都不相等的等差數(shù)列的前6項和為60,且的等比中項.
( I ) 求數(shù)列的通項公式;
(II) 若數(shù)列滿足,且,求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列中,且點在直線上。
(1)求數(shù)列的通項公式;
(2)若函數(shù)求函數(shù)的最小值;
(3)設(shè)表示數(shù)列的前項和.試問:是否存在關(guān)于的整式,使得
對于一切不小于2的自然數(shù)恒成立?若存在,寫出的解析式,并加以證明;若不存在,試說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列{an}滿足: , 
(Ⅰ)求,并求數(shù)列{an}通項公式;
(Ⅱ)記數(shù)列{an}前2n項和為,當(dāng)取最大值時,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列的首項,公差.且分別是等比數(shù)列.
(1)求數(shù)列的通項公式;
(2)設(shè)數(shù)列對任意自然數(shù)均有成立,求的值.

查看答案和解析>>

同步練習(xí)冊答案