【題目】已知函數(shù)=2cosωx)(ω>0)滿足:f)=f),且在區(qū)間(,)內(nèi)有最大值但沒有最小值,給出下列四個命題:P1在[0,]上單調(diào)遞減;P2的最小正周期是4π;P3的圖象關(guān)于直線x對稱;P4的圖象關(guān)于點(,0)對稱.其中的真命題是( )

A.P1P2B.P2,P4C.P1P3D.P3,P4

【答案】B

【解析】

根據(jù)對稱性和最值求出函數(shù)解析式,即可判定單調(diào)性,周期和對稱性.

函數(shù)=2cosωx)(ω>0)滿足:f)=f),

即對稱軸,

且在區(qū)間(,)內(nèi)有最大值但沒有最小值,

,且

,所以,

所以

對于P1,所以在[0,]上不單調(diào),P1不是真命題;

P2的最小正周期是4πP2是真命題;

P3不是最值,的圖象不關(guān)于直線x對稱,P3不是真命題;

P4,的圖象關(guān)于點(0)對稱,P4是真命題.

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為推動更多人閱讀,聯(lián)合國教科文組織確定每年的4月23日為“世界讀書日”設(shè)立目的是希望居住在世界各地的人,無論你是年老還是年輕,無論你是貧窮還是富裕,都能享受閱讀的樂趣,都能尊重和感謝為人類文明做出過巨大貢獻(xiàn)的思想大師們,都能保護(hù)知識產(chǎn)權(quán).為了解不同年齡段居民的主要閱讀方式,某校興趣小組在全市隨機調(diào)查了200名居民,經(jīng)統(tǒng)計這200人中通過電子閱讀與紙質(zhì)閱讀的人數(shù)之比為3:1,將這200人按年齡分組,其中統(tǒng)計通過電子閱讀的居民得到的頻率分布直方圖如圖所示,

(1)求a的值及通過電子閱讀的居民的平均年鹼;

(2)把年齡在第1,2,3組的居民稱為青少年組,年齡在第4,5組的居民稱為中老年組,若選出的200人中通過紙質(zhì)閱讀的中老年有30人,請完成下面2×2列聯(lián)表,并判斷是否有97.5%的把握認(rèn)為閱讀方式與年齡有關(guān)?

參考公式:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為了了解學(xué)生對消防知識的了解情況,從高一年級和高二年級各選取100名同學(xué)進(jìn)行消防知識競賽.下圖(1)和圖(2)分別是對高一年級和高二年級參加競賽的學(xué)生成績按分組,得到的頻率分布直方圖.

1)請計算高一年級和高二年級成績小于60分的人數(shù);

2)完成下面列聯(lián)表,并回答:有多大的把握可以認(rèn)為“學(xué)生所在的年級與消防常識的了解存在相關(guān)性”?

成績小于60分人數(shù)

成績不小于60分人數(shù)

合計

高一

高二

合計

附:臨界值表及參考公式:.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率,過焦點且垂直于x軸的直線被橢圓截得的線段長為3

(1)求橢圓的方程;

(2)已知P為直角坐標(biāo)平面內(nèi)一定點,動直線l:與橢圓交于A、B兩點,當(dāng)直線PA與直線PB的斜率均存在時,若直線PA與PB的斜率之和為與t無關(guān)的常數(shù),求出所有滿足條件的定點P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司近年來科研費用支出萬元與公司所獲得利潤萬元之間有如下的統(tǒng)計數(shù)據(jù):

x

2

3

4

5

Y

18

27

32

35

1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;

2)試根據(jù)(1)求出的線性回歸方程,預(yù)測該公司科研費用支出為10萬元時公司所獲得的利潤.

參考公式:用最小二乘法求線性回歸方程的系數(shù)公式:

參考數(shù)據(jù):2×18+3×27+4×32+5×35=420

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某蛋糕店制作并銷售一款蛋糕,制作一個蛋糕成本3元,且以8元的價格出售,若當(dāng)天賣不完,剩下的則無償捐獻(xiàn)給飼料加工廠。根據(jù)以往100天的資料統(tǒng)計,得到如下需求量表。該蛋糕店一天制作了這款蛋糕個,以(單位:個,,)表示當(dāng)天的市場需求量,(單位:元)表示當(dāng)天出售這款蛋糕獲得的利潤.

需求量/個

天數(shù)

15

25

30

20

10

(1)當(dāng)時,若時獲得的利潤為,時獲得的利潤為,試比較的大小;

(2)當(dāng)時,根據(jù)上表,從利潤不少于570元的天數(shù)中,按需求量分層抽樣抽取6天.

(i)求此時利潤關(guān)于市場需求量的函數(shù)解析式,并求這6天中利潤為650元的天數(shù);

(ii)再從這6天中抽取3天做進(jìn)一步分析,設(shè)這3天中利潤為650元的天數(shù)為,求隨機變量的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右頂點分別為,長軸長為4,離心率為.過右焦點的直線交橢圓兩點(均不與重合),記直線的斜率分別為.

(Ⅰ)求橢圓的方程;

(Ⅱ)是否存在常數(shù),當(dāng)直線變動時,總有成立?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱中,DAC邊的中點,,.

1)求證:AB1/∥平面BDC1

2)求異面直線AB1BC1所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

如圖,長方體ABCDA1B1C1D1的底面ABCD是正方形,點E在棱AA1上,BEEC1.

1)證明:BE⊥平面EB1C1

2)若AE=A1E,求二面角BECC1的正弦值.

查看答案和解析>>

同步練習(xí)冊答案