【題目】若函數(shù)處有極小值,則實數(shù)等于__________.

【答案】1

【解析】

fx)=ax3﹣2x2+a2x,知f′(x)=3ax2﹣4x+a2,由fx)在x=1處取得極小值,知f′(1)=3a﹣4+a2=0,由此能求出a,再根據(jù)條件檢驗即可.

fx)=ax3﹣2x2+a2x,

f′(x)=3ax2﹣4x+a2

fx)=ax3﹣2x2+a2xx=1處取得極小值,

f′(1)=3a﹣4+a2=0,

解得a=1或a=﹣4,

又當a=-4時,f′(x)=-12x2﹣4x+16=-4(x-1)(3x+4),此時fx在(上單增,在(1,上單減,所以x=1時取得極大值,舍去;

又a=1時,f′(x)=3x2﹣4x+1=(x-1)(3x-1),此時fx在(上單減,在(1,上單增,符合在x=1處取得極小值,

所以a=1.

故答案為:1

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)fx)滿足條件f0)=1,及fx+1)﹣fx)=2x

1)求函數(shù)fx)的解析式;

2)在區(qū)間[1,1]上,yfx)的圖象恒在y2x+m的圖象上方,試確定實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個化肥廠生產甲、乙兩種混合肥料,生產1車皮甲種肥料的主要原料是磷酸鹽4噸、硝酸鹽18噸;生產1車皮乙種肥料的主要原料是磷酸鹽1噸、硝酸鹽15噸,現(xiàn)庫存磷酸鹽10噸、硝酸鹽66噸,在此基礎上生產這兩種混合肥料。如果生產1車皮甲種肥料,產生的利潤為12000元;生產1車皮乙種肥料,產生的利潤為7000元。那么可產生最大的利潤是__________元.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知公差的等差數(shù)列的前項和為,且滿足.

1)求數(shù)列的通項公式;

2)求證:是數(shù)列中的項;

3)若正整數(shù)滿足如下條件:存在正整數(shù),使得數(shù)列,為遞增的等比數(shù)列,求的值所構成的集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,曲線C1是以原點O為中心,F(xiàn)1,F(xiàn)2為焦點的橢圓的一部分曲線C2是以O為頂點,F(xiàn)2為焦點的拋物線的一部分,A是曲線C1和C2的交點且AF2F1為鈍角,若|AF1|=,|AF2|=

(1)求曲線C1和C2的方程;

(2)設點C是C2上一點,若|CF1|=|CF2|,求CF1F2的面積

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐中, , ,若該三棱錐的四個頂點均在同一球面上,則該球的體積為( )

A. B. C. D.

【答案】D

【解析】在三棱錐中,因為, , ,所以,則該幾何體的外接球即為以為棱長的長方體的外接球,則 ,其體積為 ;故選D.

點睛:在處理幾何體的外接球問題,往往將所給幾何體與正方體或長方體進行聯(lián)系,常用補體法補成正方體或長方體進行處理,本題中由數(shù)量關系可證得 從而幾何體的外接球即為以為棱長的長方體的外接球,也是處理本題的技巧所在.

型】單選題
束】
21

【題目】已知函數(shù),則的大致圖象為(

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我們國家正處于老齡化社會中,老有所依也是政府的民生工程.某市有戶籍的人口共萬,其中老人(年齡歲及以上)人數(shù)約有萬,為了了解老人們的健康狀況,政府從老人中隨機抽取人并委托醫(yī)療機構免費為他們進行健康評估,健康狀況共分為不能自理、不健康尚能自理、基本健康、健康四個等級,并以歲為界限分成兩個群體進行統(tǒng)計,樣本分布被制作成如下圖表:

(1)若從樣本中的不能自理的老人中采取分層抽樣的方法再抽取人進一步了解他們的生活狀況,則兩個群體中各應抽取多少人?

(2)估算該市歲以上長者占全市戶籍人口的百分比;

(3)政府計劃為歲及以上長者或生活不能自理的老人每人購買元/年的醫(yī)療保險,為其余老人每人購買元/年的醫(yī)療保險,不可重復享受,試估計政府執(zhí)行此計劃的年度預算.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】20051215,中央密蘇里州立大學的教授 Curtis Cooper Steven Boone發(fā)現(xiàn)了第43個麥森質數(shù).這個質數(shù)是______位數(shù);它的末兩位數(shù)是______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在極坐標系中,曲線的極坐標方程為,以極點為原點,極軸為軸的非負半軸建立平面直角坐標系,直線的參數(shù)方程為為參數(shù), ).

(1)求曲線的直角坐標方程和直線的普通方程;

(2)若曲線上的動點到直線的最大距離為,求的值.

查看答案和解析>>

同步練習冊答案