分析 先由割線定理得BD•BC=BG•BH,再由圖中的等量關(guān)系,得BD•BC=2BD2=AB2=BG•BH,證明△BAH∽△BGA,從而得出∠AGB=∠HAB=90°,即AG⊥GB,再由DB⊥AD,即可得證.
解答 證明:如圖所示,由割線定理,得BD•BC=BG•BH,
∵CD=BD=AD,DA⊥BC,
∴AC=AB=$\sqrt{2}$BD,∠BAD=∠CAD=45°,
∴△CBA是等腰直角三角形,即∠CAB=90°,
∴BD•BC=2BD2=AB2=BG•BH,即$\frac{AB}{BG}$=$\frac{BH}{AB}$,
又∵∠ABG=∠ABH,∴△BAH∽△BGA,
∴∠AGB=∠HAB=90°,即AG⊥GB.
又DB⊥AD,
可得四邊形ABDG有外接圓.
點(diǎn)評(píng) 本題主要考查圓中的垂直關(guān)系、割線定理、三角形相似等基礎(chǔ)知識(shí),考查學(xué)生的分析問題解決問題的能力、轉(zhuǎn)化能力、計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | 2 | C. | $\sqrt{2}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①和④ | B. | ②和④ | C. | ②和⑤ | D. | ③和⑤ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com