一個(gè)側(cè)棱與底面垂直的四棱柱的正視圖和俯視圖如圖所示,該四棱柱的體積為( 。
A、
3
2
B、
3
2
C、
3
3
2
D、
9
4
考點(diǎn):由三視圖求面積、體積
專(zhuān)題:空間位置關(guān)系與距離
分析:由三視圖可知:該幾何體為直四棱柱,高為
3
,其底面為含60°的等腰梯形腰與底邊分別為1,2.
解答: 解:由三視圖可知:該幾何體為直四棱柱,高為
3
,其底面為含60°的等腰梯形腰與底邊分別為1,2.
∴該四棱柱的體積V=
1
2
×(1+2)×
3
2
×
3
=
9
4

故選:D.
點(diǎn)評(píng):本題考查直四棱柱的三視圖及其體積計(jì)算公式、等腰梯形的面積計(jì)算公式,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=3x+lnx-5的零點(diǎn)所在區(qū)間為( 。
A、(0,1)
B、(1,2)
C、(2,3)
D、(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)等差數(shù)列{an}滿足a3=5,a10=-9.
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)求{an}的前n項(xiàng)和Sn的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x|x-a|,a>0
(1)若a=1時(shí),判斷f(x)的奇偶性;
(2)寫(xiě)出函數(shù)的單調(diào)區(qū)間;
(3)若關(guān)于x的方程f(x)=a-
3
4
在區(qū)間[1,2]上恰有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知α,β,γ是不同的平面,m,n是不同的直線,給出下列4個(gè)命題:
①若α⊥γ,β⊥γ,則α∥β;
②若α⊥β,β⊥γ,則α⊥γ;
③若m⊥α,α⊥β,則m∥β;
④若m⊥α,n⊥α,則m∥n.
則其中真命題的個(gè)數(shù)為
 
 個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(x+2)7展開(kāi)式中含x4項(xiàng)的系數(shù)為
 
(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若在區(qū)間[1,6]和[1,4]各取一個(gè)數(shù),分別記為a,b,則方程
x2
a2
+
y2
b2
=1表示焦點(diǎn)在x軸上,且離心率小于
2
2
3
的橢圓的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)滿足對(duì)定義域內(nèi)的任意x,都有f(x+2)+f(x)<2f(x+1),則函數(shù)f(x)可以是( 。
A、f(x)=2x+1
B、f(x)=x2-2x
C、f(x)=ex
D、f(x)=lnx

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)M(5,-1),則它關(guān)于直線l:x+y-6=0的對(duì)稱(chēng)點(diǎn)的坐標(biāo)為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案