分析 (1)根據(jù)向量的數(shù)量積定義列出方程解出a,b,c的關(guān)系,利用余弦定理求出cosB;
(2)用A表示C,使用誘導(dǎo)公式和二倍角公式化簡代數(shù)式得出A,利用正弦定理解出a,c,代入面積公式計算.
解答 解:(1)∵2$\overrightarrow{BC}$•$\overrightarrow{BA}$=b2-(a+c)2.∴2accosB=b2-a2-c2-2ac.
又∵2accosB=a2+c2-b2,∴a2+c2-b2=b2-a2-c2-2ac,即a2+c2-b2=-ac.
∴cosB=$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$=-$\frac{1}{2}$.
∴B=$\frac{2π}{3}$.
(2)∵A+C=π-B=$\frac{π}{3}$,∴C=$\frac{π}{3}-A$,
∴2$\sqrt{3}$cos2$\frac{A}{2}$-sin($\frac{4π}{3}$-C)=$\sqrt{3}$(1+cosA)-sin(π+A)=$\sqrt{3}$+$\sqrt{3}$cosA+sinA
=$\sqrt{3}+$2sin(A+$\frac{π}{3}$).
∴當(dāng)A=$\frac{π}{6}$時,代數(shù)式2$\sqrt{3}$cos2$\frac{A}{2}$-sin($\frac{4π}{3}$-C)取得最大值.
∴A=C=$\frac{π}{6}$,∴a=c.
由正弦定理得:$\frac{a}{sinA}=\frac{sinB}=\frac{c}{sinC}$,即$\frac{a}{\frac{1}{2}}=\frac{2\sqrt{3}}{\frac{\sqrt{3}}{2}}=\frac{c}{\frac{1}{2}}$,
解得a=c=2.
∴S△ABC=$\frac{1}{2}acsinB$=$\frac{1}{2}×2×2×\frac{\sqrt{3}}{2}$=$\sqrt{3}$.
點(diǎn)評 本題考查了平面向量數(shù)量積的定義,三角函數(shù)的恒等變換,正余弦定理,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a+b+$\frac{1}{\sqrt{ab}}>2\sqrt{2}$ | B. | (a+b)($\frac{1}{a}+\frac{1}$)>4 | C. | $\frac{{a}^{2}+^{2}}{\sqrt{ab}}>ab$ | D. | $\frac{2ab}{a+b}>\sqrt{ab}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $10\sqrt{3}$海里 | B. | $\frac{{10\sqrt{6}}}{3}$海里 | C. | $5\sqrt{2}$ 海里 | D. | $5\sqrt{6}$海里 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | 1 | D. | 2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com