【題目】邁入2018年后,直播答題突然就火了.在1月6號的一場活動中,最終僅有23人平分100萬,這23人可以說是“學霸”級的大神.隨著直播答題的發(fā)展,平臺“燒錢大戰(zhàn)”模式的可持續(xù)性受到了質(zhì)疑,某網(wǎng)站隨機選取1000名網(wǎng)民進行了調(diào)查,得到的數(shù)據(jù)如下表:
男 | 女 | |
認為直播答題模式可持續(xù) | 360 | 280 |
認為直播答題模式不可持續(xù) | 240 | 120 |
(1)根據(jù)表格中的數(shù)據(jù),能否在犯錯誤不超過的前提下,認為對直播答題模式的態(tài)度與性別有關(guān)系?
(2)已知在參與調(diào)查的1000人中,有20%曾參加答題游戲瓜分過獎金,而男性被調(diào)查者有15%曾參加游戲瓜分過獎金,求女性被調(diào)查者參與游戲瓜分過獎金的概率.
參考公式: .
臨界值表:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【答案】(1)見解析;(2)0.275
【解析】
(1)根據(jù)列聯(lián)表中數(shù)據(jù)計算K2的值,對照臨界值得出結(jié)論;
(2)利用古典概型公式即可得到結(jié)果.
(1)依題意,的觀測值,
故可以在犯錯誤的概率不超過0.5%的前提下,認為對直播答題模式的態(tài)度與性別有關(guān)系;
(2)由題意,參與答題游戲獲得過獎勵的人數(shù)共有人;
其中男性被調(diào)查者獲得過獎勵的人數(shù)為人,
故女性調(diào)查者獲得過獎勵人數(shù)為人,記女性被調(diào)查者參與游戲瓜分過獎勵為事件,
則.
所以女性被調(diào)查者參與游戲瓜分過獎金的概率為0.275.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,四邊形是直角梯形, , , 底面, , , 是的中點.
(1)求證:平面平面;
(2)若二面角的余弦值為,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)數(shù)列的前項和為,,.
(1)求數(shù)列的通項公式;
(2)設(shè)數(shù)列滿足:
對于任意,都有成立.
①求數(shù)列的通項公式;
②設(shè)數(shù)列,問:數(shù)列中是否存在三項,使得它們構(gòu)成等差數(shù)列?若存在,求出這三項;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線的的參數(shù)方程為(其中為參數(shù)),以坐標原點為極點,軸的正半軸為極軸的極坐標系中,點的極坐標為,直線經(jīng)過點.曲線的極坐標方程為.
(1)求直線的普通方程與曲線的直角坐標方程;
(2)過點作直線的垂線交曲線于兩點(在軸上方),求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,以為極點,軸的正半軸為極軸建立極坐標系,已知曲線的極坐標方程為,曲線的極坐標方程為,曲線的極坐標方程為.
(1)求與的直角坐標方程;
(2)若與的交于點,與交于、兩點,求的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,點點關(guān)于原點對稱的點為二次函數(shù)的圖像經(jīng)過點和點回答以下問題:
(1)用表示和的圖像的頂點的縱坐標;
(2)證明:若二次函數(shù)的圖像上的點滿足,則向量與的數(shù)量積大于.
(3)當變化時,求中二次函數(shù)頂點縱坐標的最大值,并求出此時的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某大型運動會的組委會為了搞好接待工作,招募了30名男志愿者和20名女志愿者.調(diào)查發(fā)現(xiàn),這些志愿者中有部分志愿者喜愛運動,另一部分志愿者不喜歡運動,并得到了如下等高條形圖和列聯(lián)表:
喜愛運動 | 不喜愛運動 | 總計 | |
男生 | 30 | ||
女生 | 20 | ||
總計 | 50 |
(1)求出列聯(lián)表中的值;
(2)是否有的把握認為喜愛運動與性別有關(guān)?附:參考公式和數(shù)據(jù):,(其中)
0.500 | 0.100 | 0.050 | 0.010 | 0.001 | |
0.455 | 2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com