【題目】在平面直角坐標(biāo)系中,直線的的參數(shù)方程為(其中為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸的極坐標(biāo)系中,點的極坐標(biāo)為,直線經(jīng)過點曲線的極坐標(biāo)方程為.

(1)求直線的普通方程與曲線的直角坐標(biāo)方程

(2)過點作直線的垂線交曲線兩點(軸上方),求的值.

【答案】(1),;(2)

【解析】

(1)利用代入法消去參數(shù)可得到直線的普通方程,利用公式可得到曲線的直角坐標(biāo)方程;(2)設(shè)直線的參數(shù)方程為為參數(shù)),

代入,根據(jù)直線參數(shù)方程的幾何意義,利用韋達(dá)定理可得結(jié)果.

(1)由題意得點的直角坐標(biāo)為,將點代入

則直線的普通方程為.

,即.

故曲線的直角坐標(biāo)方程為.

(2)設(shè)直線的參數(shù)方程為為參數(shù)),

代入

設(shè)對應(yīng)參數(shù)為,對應(yīng)參數(shù)為,且.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是平行四邊形,∠BCD=135°,側(cè)面PAB⊥底面ABCD,∠BAP=90°,AB=AC=PA=2,EF分別為BC,AD的中點,點M在線段PD上.

)求證:EF⊥平面PAC;

)若MPD的中點,求證:ME∥平面PAB;

)如果直線ME與平面PBC所成的角和直線ME與平面ABCD所成的角相等,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過點作拋物線的兩條切線,切點分別為,,,分別交軸于,兩點,為坐標(biāo)原點,則的面積之比為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】把物體放在冷空氣中冷卻,如果物體原來的溫度是,空氣的溫度是,則1min后物體的溫度可由公式求得,其中k是常數(shù),把溫度是的物體放在15℃的空氣中冷卻,1 min后,物體的溫度是.

1)求出k的值;

2)計算開始冷卻多久后,上述物體的溫度分別是;

3)判斷上述物體最終能否冷卻到12℃,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某次文藝匯演,要將A、B、C、D、E、F這六個不同節(jié)目編排成節(jié)目單,如下表:

如果A、B兩個節(jié)目要相鄰,且都不排在第3號位置,則節(jié)目單上不同的排序方式有(  。┓N

A. 192 B. 144 C. 96 D. 72

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在等比數(shù)列{an}中,=2,,=128,數(shù)列{bn}滿足b1=1,b2=2,且{}為等差數(shù)列.

(1)求數(shù)列{an}和{bn}的通項公式;

(2)求數(shù)列{bn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正四棱錐中,E,F分別為棱VAVC的中點.

(1)求證:EF平面ABCD;

(2)求證:平面VBD平面BEF

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,橢圓C:的焦點為F1(–1、0),

F21,0).過F2x軸的垂線l,在x軸的上方,l與圓F2:交于點A,與橢圓C交于點D.連結(jié)AF1并延長交圓F2于點B,連結(jié)BF2交橢圓C于點E,連結(jié)DF1.已知DF1=

1)求橢圓C的標(biāo)準(zhǔn)方程;

2)求點E的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的離心率為,且過點.直線交于,兩點,點的左焦點.

(1)求橢圓的方程;

(2)若過點且不與軸重合,求面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案