4.已知數(shù)列{an}滿足a1=1,an+1•an=2n(n∈N*),則S2016=(  )
A.22016-1B.3•21008-3C.3•21008-1D.3•21007-2

分析 數(shù)列{an}滿足a1=1,an+1•an=2n(n∈N*),a2•a1=2,解得a2.當(dāng)n≥2時(shí),可得:$\frac{{a}_{n+1}}{{a}_{n-1}}$=2.于是數(shù)列{an}的奇數(shù)項(xiàng)與偶數(shù)項(xiàng)分別成等比數(shù)列,公比為2.通過分組求和、利用等比數(shù)列的前n項(xiàng)和公式即可得出.

解答 解:∵數(shù)列{an}滿足a1=1,an+1•an=2n(n∈N*),
∴a2•a1=2,解得a2=2.
當(dāng)n≥2時(shí),$\frac{{a}_{n+1}{a}_{n}}{{a}_{n}{a}_{n-1}}$=$\frac{{a}_{n+1}}{{a}_{n-1}}$=$\frac{{2}^{n}}{{2}^{n-1}}$=2.
∴數(shù)列{an}的奇數(shù)項(xiàng)與偶數(shù)項(xiàng)分別成等比數(shù)列,公比為2.
則S2016=(a1+a3+…+a2015)+(a2+a4+…+a2016
=$\frac{{2}^{1008}-1}{2-1}$+$\frac{2({2}^{1008}-1)}{2-1}$
=3•21008-3.
故選:B.

點(diǎn)評(píng) 本題考查了等比數(shù)列的前n項(xiàng)和公式、分類討論方法、分組求和方法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.如圖網(wǎng)格紙上小正方形的邊長(zhǎng)為l,粗實(shí)線畫出的是某幾何體的三視圖,則這個(gè)幾何體的體積為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,在四面體ABCD中,CD=CB,AD⊥BD,點(diǎn)E,F(xiàn)分別是AB,BD的中點(diǎn).
(Ⅰ)求證:平面ABD⊥平面EFC;
(Ⅱ)當(dāng)AD=CD=BD=1,且EF⊥CF時(shí),求三棱錐C-ABD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,在三棱柱ABC-A1B1C1中,CC1⊥平面ABC,AC=3,BC=4,AB=5,AA1=4,點(diǎn)D是AB的中點(diǎn).
(1)求證:AC1∥平面CDB1;
(2)求三棱錐C1-B1CD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知f(x)=sin(x+$\frac{π}{6}$),若sinα=$\frac{3}{5}$(0<α<$\frac{π}{2}}$),則f(α+$\frac{π}{12}}$)=( 。
A.$-\frac{{7\sqrt{2}}}{10}$B.$-\frac{{\sqrt{2}}}{10}$C.$\frac{{\sqrt{2}}}{10}$D.$\frac{{7\sqrt{2}}}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知集合A={x|-1≤x≤1},B={x|x2-5x+6≥0},則下列結(jié)論中正確的是(  )
A.A∩B=BB.A∪B=AC.A?BD.RA=B

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在邊長(zhǎng)為2的正△ABC中,已知$\overrightarrow{AD}$=$\frac{2}{3}$$\overrightarrow{AC}$,$\overrightarrow{BE}$=λ$\overrightarrow{BC}$,若$\overrightarrow{AE}$⊥$\overrightarrow{BD}$,則λ=$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.sin10°cos50°+cos10°sin50°的值等于( 。
A.$\frac{1}{4}$B.$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知f(x)=ex(sinx-cosx),則函數(shù)f(x)的圖象x=$\frac{π}{2}$處的切線的斜率為2e${\;}^{\frac{π}{2}}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案