分析 (I)先求出f(1)的值,直接解不等式f(1)≥2即可;
(II)若關(guān)于x的不等式f(x)≥2恒成立,利用分段函數(shù)進(jìn)行求解即可求實(shí)數(shù)a的取值范圍.
解答 解:(I)f(1)=|2-a|+|1-1|=|2-a|,|2-a|≥2⇒a≥4或a≤0…(4分)
(II)當(dāng)a>2時(shí),$f(x)=\left\{\begin{array}{l}3x-a-1,x>\frac{a}{2}\\-x+a-1,1≤x≤\frac{a}{2}\\-3x+a+1,x<1\end{array}\right.$
作出圖象可知f(x)的最小值為$f({\frac{a}{2}})=\frac{a}{2}-1≥2⇒a≥6$,則此時(shí)a≥6;…(7分)
當(dāng)a≤2時(shí),$f(x)=\left\{\begin{array}{l}3x-a-1,x>1\\-x+a-1,\frac{a}{2}≤x≤1\\-3x+a+1,x<\frac{a}{2}\end{array}\right.$,作出圖象可知f(x)的最
小值為$f({\frac{a}{2}})=-\frac{a}{2}+1≥2⇒a≤-2$,則此時(shí)a≤-2
綜上:a≤-2或a≥6…(10分)
點(diǎn)評(píng) 本題主要考查絕對(duì)值不等式的應(yīng)用,根據(jù)條件表示為分段函數(shù)形式是解決本題的關(guān)鍵.考查學(xué)生的轉(zhuǎn)化能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | am>bm,則a>b | B. | a>b,則am>bm | C. | am2>bm2,則a>b | D. | a>b,則am2>bm2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{2π{R}^{3}}{3}$ | B. | $\frac{4π{R}^{3}}{3}$ | C. | πR3 | D. | $\frac{π{R}^{3}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -4 | B. | 0 | C. | 4 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 10 | B. | 4 | C. | 3 | D. | 2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com