13.設(shè)a,b∈R,且a>0函數(shù)f(x)=x2-ax+2b,g(x)=ax+b,在[-1,1]上g(x)的最小值為2,則f(2)等于( 。
A.-4B.0C.4D.8

分析 利用已知條件求出a,b的關(guān)系,然后求解f(2)的值.

解答 解:a>0,在[-1,1]上g(x)的最小值為2,
可得-a+b=2,
函數(shù)f(x)=x2-ax+2b,
故f(2)=4-2a+2b=4+2×2=8.
故選:D.

點評 本題考查函數(shù)的最值,考查學(xué)生的計算能力,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.一個空間幾何體的三視圖如圖所示,則這個幾何體的表面積為(  )
A.26+4$\sqrt{2}$B.27+4$\sqrt{2}$C.34+4$\sqrt{2}$D.17+4$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=lnx-x.
(1)求f(x)的單調(diào)區(qū)間;
(2)已知數(shù)列{an}的通項公式為an=1+$\frac{1}{{2}^{n}}$(n∈N*),求證:a1a2a3…an<e(e為自然對數(shù)的底數(shù));
(3)若k<$\frac{xf(x)+{x}^{2}}{x-1}$對任意x>2恒成立,求實數(shù)k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=|2x-a|+|x-1|.
(I)解關(guān)于a的不等式f(1)≥2;
(II)若關(guān)于x的不等式f(x)≥2恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知$\frac{1+tan(θ+720°)}{1-tan(θ-360°)}$=3+2$\sqrt{2}$,求:[cos2(π-θ)+sin(π+θ)•cos(π-θ)+2sin2(θ-π)]•$\frac{1}{co{s}^{2}(-θ-2π)}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x+1(0≤x<1)}\\{{2}^{x}-\frac{1}{2}(x≥1)}\end{array}\right.$,設(shè)a>b≥0,若f(a)=f(b),則f(a)+b的取值范圍是[2,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若直線ax+y-1=0和直線2x+(a+1)y+1=0垂直,則實數(shù)a等于( 。
A.-$\frac{1}{3}$B.$\frac{1}{3}$C.-$\frac{1}{4}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=x|m-x|,且f(4)=0.
(1)求實數(shù)m的值;
(2)出函數(shù)f(x)的單調(diào)區(qū)間;
(3)若方程f(x)=a只有一個實根,確定a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)f(x)的定義域為R,它的導(dǎo)函數(shù)y=f′(x)的部分圖象如圖所示,則下面結(jié)論正確的是( 。
A.在(1,2)上函數(shù)f(x)為增函數(shù)
B.在(3,4)上函數(shù)f(x)為減函數(shù)
C.在(1,3)上函數(shù)f(x)有極大值
D.x=3是函數(shù)f(x)在區(qū)間[1,5]上的極小值點

查看答案和解析>>

同步練習(xí)冊答案