【題目】設(shè)橢圓:()的右焦點(diǎn)為,短軸的一個端點(diǎn)到的距離等于焦距.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)、是四條直線,所圍成的矩形在第一、第二象限的兩個頂點(diǎn),是橢圓上任意一點(diǎn),若,求證:為定值;
(3)過點(diǎn)的直線與橢圓交于不同的兩點(diǎn)、,且滿足△與△的面積的比值為,求直線的方程.
【答案】(1)(2)證明見解析(3)
【解析】
(1)根據(jù)橢圓焦點(diǎn)坐標(biāo)求得,根據(jù)短軸端點(diǎn)到焦點(diǎn)的距離求得,由此求得,進(jìn)而求得橢圓的標(biāo)準(zhǔn)方程.
(2)求得的坐標(biāo),設(shè)出點(diǎn)坐標(biāo),結(jié)合向量的坐標(biāo)運(yùn)算,由求得,也即求得點(diǎn)坐標(biāo),將其代入橢圓,化簡后證得為定值.
(3)將三角形和三角形的面積的比值,轉(zhuǎn)化為邊長的比值,即.當(dāng)直線斜率不存在時,根據(jù)橢圓的對稱性可知,不符合題意.當(dāng)直線的斜率不存在時,設(shè)出直線的方程.代入橢圓方程,化簡后寫出韋達(dá)定理.由,求得,代入韋達(dá)定理,由此解方程求得的值,進(jìn)而求得直線的方程.
(1)由已知,,
又,故,
所以,,所以,橢圓的標(biāo)準(zhǔn)方程為.
(2),,
設(shè),則,
由已知,即,
所以 ,所以,化簡得為定值.
(3)等價于,
當(dāng)直線的斜率不存在時,,不合題意.
故直線的斜率存在,設(shè):,
由消去,得,
設(shè),,則①,②,
由,得,,將其代入①②,得③,④.將③代入④,化簡得,解得.
所以,直線的方程為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖一塊長方形區(qū)域,,,在邊的中點(diǎn)處有一個可轉(zhuǎn)動的探照燈,其照射角始終為,設(shè),探照燈照射在長方形內(nèi)部區(qū)域的面積為.
(1)當(dāng)時,求關(guān)于的函數(shù)關(guān)系式;
(2)當(dāng)時,求的最大值;
(3)若探照燈每9分鐘旋轉(zhuǎn)“一個來回”(自轉(zhuǎn)到,再回到,稱“一個來回”,忽略在及處所用的時間),且轉(zhuǎn)動的角速度大小一定,設(shè)邊上有一點(diǎn),且,求點(diǎn)在“一個來回”中被照到的時間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】足球是世界普及率最高的運(yùn)動,我國大力發(fā)展校園足球.為了解本地區(qū)足球特色學(xué)校的發(fā)展?fàn)顩r,社會調(diào)查小組得到如下統(tǒng)計(jì)數(shù)據(jù):
年份x | 2014 | 2015 | 2016 | 2017 | 2018 |
足球特色學(xué)校y(百個) | 0.30 | 0.60 | 1.00 | 1.40 | 1.70 |
(1)根據(jù)上表數(shù)據(jù),計(jì)算y與x的相關(guān)系數(shù)r,并說明y與x的線性相關(guān)性強(qiáng)弱.
(已知:,則認(rèn)為y與x線性相關(guān)性很強(qiáng);,則認(rèn)為y與x線性相關(guān)性一般;,則認(rèn)為y與x線性相關(guān)性較):
(2)求y關(guān)于x的線性回歸方程,并預(yù)測A地區(qū)2020年足球特色學(xué)校的個數(shù)(精確到個).
參考公式和數(shù)據(jù):,
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班學(xué)生中喜愛看綜藝節(jié)目的有18人,體育節(jié)目的有27人,時政節(jié)目的有9人,現(xiàn)采取分層抽樣的方法從這些學(xué)生中抽取6名學(xué)生.
(Ⅰ)求應(yīng)從喜愛看綜藝節(jié)目,體育節(jié)目,時政節(jié)目的學(xué)生中抽取的學(xué)生人數(shù);
(Ⅱ)若從抽取的6名學(xué)生中隨機(jī)抽取2人分作一組,
(1)列出所有可能的結(jié)果;
(2)求抽取的2人中有1人喜愛綜藝節(jié)目1人喜愛體育節(jié)目的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)參加項(xiàng)目生產(chǎn)的工人為人,平均每人每年創(chuàng)造利潤萬元.根據(jù)現(xiàn)實(shí)的需要,從項(xiàng)目中調(diào)出人參與項(xiàng)目的售后服務(wù)工作,每人每年可以創(chuàng)造利潤萬元(),項(xiàng)目余下的工人每人每年創(chuàng)造利圖需要提高
(1)若要保證項(xiàng)目余下的工人創(chuàng)造的年總利潤不低于原來名工人創(chuàng)造的年總利潤,則最多調(diào)出多少人參加項(xiàng)目從事售后服務(wù)工作?
(2)在(1)的條件下,當(dāng)從項(xiàng)目調(diào)出的人數(shù)不能超過總?cè)藬?shù)的時,才能使得項(xiàng)目中留崗工人創(chuàng)造的年總利潤始終不低于調(diào)出的工人所創(chuàng)造的年總利潤,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在上的函數(shù),如果滿足:對任意,存在常數(shù),都有成立,則稱是上的有界函數(shù),其中稱為函數(shù)的上界.
(1)設(shè),判斷在上是否為有界函數(shù),若是,請說明理由,并寫出的所有上界的集合;若不是,也請說明理由;
(2)若函數(shù)在上是以為上界的有界函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司生產(chǎn)的某批產(chǎn)品的銷售量萬件(生產(chǎn)量與銷售量相等)與促銷費(fèi)用萬元滿足(其中,為正常數(shù)).已知生產(chǎn)該產(chǎn)品還需投入成本萬元(不含促銷費(fèi)用),產(chǎn)品的銷售價格定為元件.
(1)將該產(chǎn)品的利潤萬元表示為促銷費(fèi)用萬元的函數(shù);
(2)促銷費(fèi)用投入多少萬元時,該公司的利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)設(shè)橢圓與雙曲線有相同的焦點(diǎn)、,是橢圓與雙曲線的公共點(diǎn),且△的周長為6,求橢圓的方程;我們把具有公共焦點(diǎn)、公共對稱軸的兩段圓錐曲線弧合成的封閉曲線稱為“盾圓”;
(2)如圖,已知“盾圓”的方程為,設(shè)“盾圓”上的任意一點(diǎn)到的距離為,到直線的距離為,求證:為定值;
(3)由拋物線弧()與第(1)小題橢圓弧()所合成的封閉曲線為“盾圓”,設(shè)過點(diǎn)的直線與“盾圓”交于、兩點(diǎn),,,且(),試用表示,并求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形是正方形,四邊形是梯形,∥,,平面平面,且.
(Ⅰ)求證:∥平面;
(Ⅱ)求二面角的大;
(Ⅲ)已知點(diǎn)在棱上,且異面直線與所成角的余弦值為,求線段的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com