13.已知函數(shù)f(x)=2sinxcosx+sin(2x+$\frac{π}{2}$).
(1)若x∈R,求f(x)的最小正周期和單調(diào)遞增區(qū)間;
(2)當(dāng)x∈[0,$\frac{π}{3}$]求f(x)的最大值.

分析 (1)利用倍角公式及降冪公式變形,再由輔助角公式化積,利用周期公式求得周期.然后利用復(fù)合函數(shù)的單調(diào)性求得函數(shù)的單調(diào)增區(qū)間;
(2)由x的范圍求得相位的范圍,進(jìn)一步求得函數(shù)的最大值.

解答 解:(1)f(x)=2sinxcosx+sin(2x+$\frac{π}{2}$)
=$sin2x+cos2x=\sqrt{2}sin(2x+\frac{π}{4})$.
∴$T=\frac{2π}{2}=π$.
由$2kπ-\frac{π}{2}≤2x+\frac{π}{4}≤\frac{π}{2}+2kπ$,得$kπ-\frac{3π}{8}≤x≤kπ+\frac{π}{8}$.
∴f(x)的單調(diào)遞增區(qū)間為$[kπ-\frac{3π}{8},kπ+\frac{π}{8}]$  k∈Z;
(2)∵x∈[0,$\frac{π}{3}$],∴$2x+\frac{π}{4}∈[\frac{π}{4},\frac{11}{12}π]$,
∴當(dāng)$2x+\frac{π}{4}$=$\frac{π}{2}$,即x=$\frac{π}{8}$時(shí),${y}_{max}=\sqrt{2}$.

點(diǎn)評(píng) 本題考查三角函數(shù)中的恒等變換應(yīng)用,考查y=Asin(ωx+φ)型函數(shù)的圖象和性質(zhì),訓(xùn)練了數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖所示,已知拋物線C:y2=4x的焦點(diǎn)是F,直線l經(jīng)過(guò)點(diǎn)F交拋物線C于A,B兩點(diǎn),A點(diǎn)在x軸下方,點(diǎn)D和點(diǎn)A關(guān)于x軸對(duì)稱(chēng).
(1)若$\overrightarrow{BF}$=4$\overrightarrow{FA}$,求直線l的方程;
(2)求S2△OAF+S2△OBD的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.對(duì)任意x,y∈R,恒有$sinx+cosy=2sin(\frac{x-y}{2}+\frac{π}{4})cos(\frac{x+y}{2}-\frac{π}{4})$,則$sin\frac{7π}{24}cos\frac{13π}{24}$等于( 。
A.$\frac{{1+\sqrt{2}}}{4}$B.$\frac{{1-\sqrt{2}}}{4}$C.$\frac{{\sqrt{3}+\sqrt{2}}}{4}$D.$\frac{{\sqrt{3}-\sqrt{2}}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知向量$\overrightarrow{a}$=(1+sin2x,sinx-cosx),$\overrightarrow$=(1,sinx+cosx),函數(shù)f(x)=$\overrightarrow{a}•\overrightarrow$
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)的最大值及取得最大值相應(yīng)的x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.若關(guān)于x的方程sinx+$\sqrt{3}$cosx+a=0在(0,2π)內(nèi)有兩個(gè)不同的實(shí)數(shù)根α,β,求實(shí)數(shù)a的取值范圍及相應(yīng)的α+β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.為了解某班學(xué)生喜愛(ài)打籃球是否與性別有關(guān),對(duì)本班50人進(jìn)行問(wèn)卷調(diào)查得到了如下的列聯(lián)表,在50人中隨機(jī)抽取1人抽到喜愛(ài)打籃球的學(xué)生的概率為$\frac{3}{5}$.
喜愛(ài)打籃球不喜愛(ài)打籃球合計(jì)
男生5
女生10
合計(jì)50
(1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整;
(2)是否有99.5%的把握認(rèn)為喜愛(ài)打籃球與性別有關(guān)?說(shuō)明你的理由;
(3)已知喜愛(ài)打籃球的10位女生中,A1,A2,A3還喜歡打羽毛球,B1,B2還喜歡打乒乓球,C1,C2還喜歡踢足球,現(xiàn)再?gòu)南矚g打羽毛球、喜歡打乒乓球、喜歡踢足球的女生中各選出1名進(jìn)行其他方面的調(diào)查,求B1和C1不全被選中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知θ為第二象限角,若tan(θ+$\frac{π}{4}$)=$\frac{1}{2}$,則sinθ-cosθ的值為( 。
A.$-\frac{{\sqrt{10}}}{5}$B.$\frac{{\sqrt{10}}}{5}$C.$\frac{{2\sqrt{10}}}{5}$D.$-\frac{{2\sqrt{10}}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.我們把1,4,9,16,25,…這些數(shù)稱(chēng)為正方形數(shù),這是因?yàn)檫@些數(shù)目的點(diǎn)可以排成正方形(如圖).

由此可推得第n個(gè)正方形數(shù)是n2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.隨著智能手機(jī)的發(fā)展,微信越來(lái)越成為人們交流的一種方式,某機(jī)構(gòu)對(duì)使用微信交流的態(tài)度進(jìn)行調(diào)查,隨機(jī)調(diào)查了50人,他們年齡的頻數(shù)分布及對(duì)使用微信交流贊成人數(shù)如下表:
年齡(歲)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75)
頻數(shù)510151055
贊成人數(shù)51012721
(Ⅰ)由以上統(tǒng)計(jì)數(shù)據(jù)填寫(xiě)下面2×2列聯(lián)表,關(guān)判斷是否有99%的把握認(rèn)為年齡45歲為分界點(diǎn)對(duì)使用微信交流的態(tài)度有差異;
年齡不低于45歲的人數(shù)年齡低于45歲的人數(shù)合計(jì)
贊成102737
不贊成10313
合計(jì)203050
(Ⅱ)若對(duì)年齡在[55,65)的被調(diào)查人中隨機(jī)抽取兩人進(jìn)行追蹤調(diào)查,求至少有1人贊成使用微信交流的概率.
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
參考數(shù)據(jù):
P(K2≥k00.0500.0100.001
k03.8416.63510.828

查看答案和解析>>

同步練習(xí)冊(cè)答案