10.第十屆珠海航展與10月28日至11月1日在珠海市機場路航展館舉行,組委會為了做好接待工作,對參加服務的200名工作人員進行為期一周的培訓,培訓結(jié)束對服務人員進行珠海航展知識測評,其成績的頻率分布直方圖如圖所示,規(guī)定95分及其以上獲優(yōu)勝獎.
(1)根據(jù)頻率分布直方圖,估計服務人員成績的平均值和中位數(shù);
(2)現(xiàn)在要用分層抽樣的方法從這200人中抽取40人,再從抽取的40人中,隨機選取2人參加某項活動,記“其中獲優(yōu)勝獎的人數(shù)”為X,求X的分布列與數(shù)學期望.

分析 (1)由頻率分布直方圖能估計服務人員成績的平均值和服務人員成績的中位數(shù).
(2)要用分層抽樣的方法從這200人中抽取40人,則95分及其以上抽到4人,由題意X的可能取值為0,1,2,分別求出相應的概率,由此能求出X的分布列和E(X).

解答 解:(1)由頻率分布直方圖估計服務人員成績的平均值為:
$\overline{x}$=77.5×0.01×5+82.5×0.04×5+87.5×0.07×5+92.5×0.06×5+97.5×0.02×5=88.5.
∵[75,85)區(qū)間內(nèi)的頻率為(0.01+0.04)×5=0.25,
[85,90)區(qū)間內(nèi)的頻率為0.07×5=0.35,
∴估計服務人員成績的中位數(shù)為:85+$\frac{0.5-0.25}{0.35}×5$≈88.57.
(2)要用分層抽樣的方法從這200人中抽取40人,
則95分及其以上抽到$\frac{40}{200}×200×0.02×5$=4人,
由題意X的可能取值為0,1,2,
P(X=0)=$\frac{{C}_{36}^{2}}{{C}_{40}^{2}}$=$\frac{21}{26}$,
P(X=1)=$\frac{{C}_{4}^{1}{C}_{36}^{1}}{{C}_{40}^{2}}$=$\frac{12}{65}$,
P(X=2)=$\frac{{C}_{4}^{2}}{{C}_{40}^{2}}$=$\frac{1}{130}$,
∴X的分布列為:

 X 0 1 2
 P $\frac{21}{26}$ $\frac{12}{65}$ $\frac{1}{130}$
E(X)=$0×\frac{21}{26}$+$1×\frac{12}{65}$+2×$\frac{1}{130}$=$\frac{1}{5}$.

點評 本題考查離散型隨機變量的數(shù)學期望,是中檔題.在歷年高考中都是必考題型.解題時要認真審題,仔細解答,注意概率和排列組合知識的靈活運用

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

20.雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的一條漸近線是3x-4y=0,則該雙曲線的離心率為$\frac{5}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.下列函數(shù)中為奇函數(shù)的是( 。
A.y=sin|x|B.y=sin2xC.y=-sinx+2D.y=sinx+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.任取x,y∈[0,2],且x,y∈N,則(x,y)滿足y≥x2的概率為( 。
A.$\frac{5}{9}$B.$\frac{2}{3}$C.$\frac{2}{9}$D.$\frac{4}{9}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知函數(shù)f(x)=alnx+$\frac{{x}^{2}}{2}$-(a+1)x+$\frac{{a}^{2}}{2}$.
(1)若f′(2)=1,求曲線y=f(x)在點(2,f(2))處的切線方程;
(2)若f(x)有一個零點,求正數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.下列命題中正確的是(  )
A.命題“?x∈R使得x2+x+1<0”的否定是“?x∈R均有x2+x+1<0”
B.若p為真命題,q為假命題,則(¬p)∨q為真命題
C.為了了解高考前高三學生每天的學習時間,現(xiàn)要用系統(tǒng)抽樣的方法從某班50個學生中抽取一個容量為10的樣本,已知50個學生的編號為1,2,3…50,若8號被選出,則18號也會被選出
D.已知m、n是兩條不同直線,α、β是兩個不同平面,α∩β=m,則“n?α,n⊥m”是“α⊥β”的充分條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.下列命題中正確的個數(shù)是命題( 。
①命題“若cosx=cosy,則x=y”的逆否命題是真命題;
②命題“任意x∈(0,+∞),2x>1”的否定是“任意x∉(0,+∞),2x≤1”;
③若命題p為真,命題?q為真,則命題p且q為真.
④命題“若x=3,則x2-2x-3=0”的否命題是“x≠3,則x2-2x-3≠0”
A.0個B.1個C.2個D.3個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.若復數(shù)z=(m+1)-(m-3)i在復平面內(nèi)對應的點在第一或第三象限,則實數(shù)m的取值范圍是(-1,3).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知點F1(-1,0),F(xiàn)2(1,0),動點P到點F1,F(xiàn)2的距離和等于4.
(Ⅰ)試判斷點P的軌跡C的形狀,并寫出其方程;
(Ⅱ)若曲線C與直線m:y=x-1相交于A、B兩點,求弦AB的長.

查看答案和解析>>

同步練習冊答案