【題目】如圖所示的三角形ABC中,一機(jī)器人從三角形ABC上的每一個頂點移動到另一個頂點,(規(guī)定:每次只能從一個頂點移動到另一個頂點),而且按逆時針方向移動的概率為順時針方向移動的概率的3,假設(shè)現(xiàn)在機(jī)器人的初始位置為頂點A處,則通過三次移動后返回到A處的概率為________________________

【答案】.

【解析】分析:先求出順時針方向移動與逆時針方向移動的概率,分兩種情況討論,分別利用獨立事件概率的乘法公式求解,然后利用互斥事件概率的加法公式求解即可.

詳解設(shè)順時針方向移動的概率為

則逆時針方向移動的概率為,

所以

所以順時針方向移動的概率為,

則逆時針方向移動的概率為

初始位置為頂點處,則通過三次移動后返回到

共有兩種情況:三次都逆時針的概率為,

三次都順時針方向移動的概率為

所以通過三次移動后返回到處的概率為

故答案為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】養(yǎng)路處建造圓錐形無底倉庫用于貯藏食鹽(供融化高速公路上的積雪之用),已建的倉庫的底面直徑為12m,高4m,養(yǎng)路處擬建一個更大的圓錐形倉庫,以存放更多食鹽,現(xiàn)有兩種方案:一是新建的倉庫的底面直徑比原來大4m(高不變);二是高度增加4m(底面直徑不變).

(1)分別計算按這兩種方案所建的倉庫的體積;

(2)分別計算按這兩種方案所建的倉庫的表面積;

(3)哪個方案更經(jīng)濟(jì)些?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】由中央電視臺綜合頻道()和唯眾傳媒聯(lián)合制作的《開講啦》是中國首檔青春電視公開課。每期節(jié)目由一位知名人士講述自己的故事,分享他們對于生活和生命的感悟,給予中國青年現(xiàn)實的討論和心靈的滋養(yǎng),討論青年們的人生問題,同時也在討論青春中國的社會問題,受到青年觀眾的喜愛,為了了解觀眾對節(jié)目的喜愛程度,電視臺隨機(jī)調(diào)查了、兩個地區(qū)的100名觀眾,得到如下的列聯(lián)表

非常滿意

滿意

合計

30

合計

已知在被調(diào)查的100名觀眾中隨機(jī)抽取1名,該觀眾是地區(qū)當(dāng)中“非常滿意”的觀眾的概率為.

(Ⅰ)現(xiàn)從100名觀眾中用分層抽樣的方法抽取20名進(jìn)行問卷調(diào)查,則應(yīng)抽取“滿意”的地區(qū)的人數(shù)各是多少;

(Ⅱ)完成上述表格,并根據(jù)表格判斷是否有的把握認(rèn)為觀眾的滿意程度與所在地區(qū)有關(guān)系;

(Ⅲ)若以抽樣調(diào)查的頻率為概率,從地區(qū)隨機(jī)抽取3人,設(shè)抽到的觀眾“非常滿意”的人數(shù)為的分布列和期望.

附:參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正項數(shù)列{an}的前n項和Sn滿足:Sn2
(1)求數(shù)列{an}的通項公式an;
(2)令b ,數(shù)列{bn}的前n項和為Tn . 證明:對于任意n∈N* , 都有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙、丁四位同學(xué)高考之后計劃去三個不同社區(qū)進(jìn)行幫扶活動,每人只能去一個社區(qū),每個社區(qū)至少一人.其中甲必須去社區(qū),乙不去社區(qū),則不同的安排方法種數(shù)為 ( )

A. 24 B. 8 C. 7 D. 6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列結(jié)論中正確的是__________

①將一組數(shù)據(jù)中的每個數(shù)據(jù)都加上或減去同一個常數(shù)后,方差不變;

②在吸煙與患肺病這兩個分類變量的獨立性檢驗中,“有99%的把握認(rèn)為吸煙與患肺病有關(guān)”的含義是“若某人吸煙,則他有99%的可能患肺。弧

③已知“”為真命題,則“”、“”、“”中至少有一個真命題;

④以模型去擬合一組數(shù)據(jù)時,為了求出回歸方程,設(shè),其變換后得到線性回歸方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項和為,且.

(1)證明是等比數(shù)列,并求的通項公式;

(2)求

(3)設(shè),若恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若定義在R上的偶函數(shù)滿足,且, ,則函數(shù)的零點個數(shù)是( )

A. 6B. 8C. 2D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(選修4﹣5:不等式選講)
已知函數(shù)f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.
(1)當(dāng)a=﹣2時,求不等式f(x)<g(x)的解集;
(2)設(shè)a>﹣1,且當(dāng) 時,f(x)≤g(x),求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案