已知函數(shù)f1(x)=lg(-x-1)的定義域?yàn)镸,函數(shù)f2(x)=lg(x-3)的定義域?yàn)镹,A=N∪M,函數(shù)g(x)=2x-a(x≤2)的值域?yàn)锽.
(1)求A、B;
(2)若函數(shù)A∩B=B,求實(shí)數(shù)a的取值范圍.
考點(diǎn):對數(shù)函數(shù)圖象與性質(zhì)的綜合應(yīng)用
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)求對數(shù)函數(shù)的定義域可得M、N,從而求得 A=N∪M.
(2)由題意可得B⊆A,再分B=∅、B≠∅兩種情況,分別求得a的范圍,再取并集,即得所求.
解答: 解:(1)由題意可得M={x|-x-1>0}={x|x<-1},N={x|x-3>0}={x|x>3},
∴A=N∪M={x|x<-1,或x>3}.
由于x≤2,可得2x∈(0,4],故函數(shù)g(x)=2x-a(x≤2)的值域?yàn)锽=(-a,4-a].
(2)若函數(shù)A∩B=B,則B⊆A,∴B=∅,或 B≠∅.
當(dāng)B=∅時,-a≥4-a,a無解.
當(dāng)B≠∅,
-a<4-a
4-a<-1
,或
-a<4-a
a≥3
,求得a>5,或 a≥3,
綜合可得,a≥3.
點(diǎn)評:本題主要考查對數(shù)函數(shù)的圖象和性質(zhì)綜合應(yīng)用,體現(xiàn)了轉(zhuǎn)化、分類討論的數(shù)學(xué)思想,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若不等式
2
x-1
≥|a2-a|對x∈(1,2]恒成立,則實(shí)數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,若對任意n∈N*,都有Sn=3an-5n.
(1)求數(shù)列{an}的首項(xiàng);
(2)若數(shù)列{an+λ}是等比數(shù)列,試求出實(shí)數(shù)λ的值,并寫出數(shù)列{an}的通項(xiàng)公式;
(3)數(shù)列{bn}滿足bn=
9n+4
an+5
,是否存在m,對任意n∈N*使得bn≤bm成立?如果存在,求出正整數(shù)m的值,如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線a,b同時和第三條直線垂直,則直線a,b的位置關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2
x-1
,若|f(x)|≥
1
5
|a2-a|對于任意x∈[-4,-1]恒成立,則實(shí)數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線
x2
a2
-
y2
b2
=1的左右準(zhǔn)線l1,l2將線段F1F2三等分,F(xiàn)1,F(xiàn)2分別為雙曲線的左右焦點(diǎn),則雙曲線的漸近線方程為( 。
A、x±
2
y=0
B、y±
2
x=0
C、x±
3
y=0
D、y±
3
x=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,割線PBC經(jīng)過圓心O,OB=PB=1,又PED交圓O于E,D,且DE=
4
7
7
,則△OPD的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C1
x2
a2
-
y2
b2
=1(a>0,b>0)
與拋物線C2:y2=2px(p>0)有相同焦點(diǎn),若雙曲線C1與拋物線C2的一個公共點(diǎn)為P,且點(diǎn)P到拋物線的準(zhǔn)線的距離為p,則雙曲線的離心率為( 。
A、
2
+1
B、
2
C、2
D、2+
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知銳角在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,滿足
a+b
cosA+cosB
=
c
cosC

(1)求證:角A,C,B成等差數(shù)列;
(2)若△ABC的面積S△ABC=
3
,求△ABC周長的最小值.

查看答案和解析>>

同步練習(xí)冊答案