【題目】對于數列{an},定義Hn= 為{an}的“優(yōu)值”,現在已知某數列{an}的“優(yōu)值”Hn=2n+1 , 記數列{an﹣kn}的前n項和為Sn , 若Sn≤S5對任意的n(n∈N*)恒成立,則實數k的取值范圍為 .
科目:高中數學 來源: 題型:
【題目】設p:實數x滿足x2﹣4ax+3a2<0(a>0);命題q:實數x滿足
(1)若a=1,且“p且q”為真,求實數x的取值范圍
(2)若¬p是¬q的充分不必要條件,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,MCN是某海灣旅游區(qū)的一角,為營造更加優(yōu)美的旅游環(huán)境,旅游區(qū)管委會決定建立面積為4 平方千米的三角形主題游戲樂園ABC,并在區(qū)域CDE建立水上餐廳.已知∠ACB=120°,∠DCE=30°.
(1)設AC=x,AB=y,用x表示y,并求y的最小值;
(2)設∠ACD=θ(θ為銳角),當AB最小時,用θ表示區(qū)域CDE的面積S,并求S的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知a,b,c分別是△ABC的角A,B,C所對的邊,且c=2,C= .
(1)若△ABC的面積等于 ,求a,b;
(2)若sinC+sin(B﹣A)=2sin2A,求A的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓C:(x+2)2+y2=5,直線l:mx﹣y+1+2m=0,m∈R.
(1)求證:對m∈R,直線l與圓C總有兩個不同的交點A、B;
(2)求弦AB的中點M的軌跡方程,并說明其軌跡是什么曲線;
(3)是否存在實數m,使得圓C上有四點到直線l的距離為 ?若存在,求出m的范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】游樂場推出了一項趣味活動,參加活動者需轉動如圖所示的轉盤兩次,每次轉動后,待轉盤停止轉動時,記錄指針所指區(qū)域中的數,設兩次記錄的數分別為x,y,獎勵規(guī)則如下:
①若xy≤3,則獎勵玩具一個;②若xy≥8,則獎勵水杯一個;③其余情況獎勵飲料一瓶,假設轉盤質地均勻,四個區(qū)域劃分均勻,小亮準備參加此項活動.
(Ⅰ)求小亮獲得玩具的概率;
(Ⅱ)請比較小亮獲得水杯與獲得飲料的概率的大小,并說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com