3.已知a=31.2,b=2log30.3,c=0.82.3,則a,b,c的大小關(guān)系為(  )
A.c<b<aB.c<a<bC.b<a<cD.b<c<a

分析 判斷三個(gè)數(shù)分別與0,1的大小關(guān)系,即可推出結(jié)果.

解答 解:a=31.2>1;b=2log30.3<0,c=0.82.3∈(0,1),
可得b<c<a
故選:D.

點(diǎn)評(píng) 本題考查指數(shù)式以及對(duì)數(shù)函數(shù)的性質(zhì)的應(yīng)用,函數(shù)值的大小比較,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知直線3x+4y-25=0與圓x2+y2=4相離,求圓上一點(diǎn)到直線的最大距離和最小距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.設(shè)定義在R上的函數(shù)f(x)=a0x4+a1x3+a2x2+a3x+a4(a0,a1,a2,a3,a4∈R),函數(shù)g(x)=$\root{3}{3f(x)+3x}$,當(dāng)x=-1時(shí),f(x)取得極大值$\frac{2}{3}$,且函數(shù)y=f(x+1)的圖象關(guān)于點(diǎn)(-1,0)對(duì)稱.
(1)求函數(shù)f(x)的表達(dá)式;
(2)求證:當(dāng)x>0時(shí),[1+$\frac{1}{g(x)}$]g(x)<e(e為自然對(duì)數(shù)的底數(shù));
(3)若bn=g(n)${\;}^{\frac{1}{g(n+1)}}$(n∈N*),數(shù)列{bn}中是否存在bn=bm(n≠m)?若存在,求出所有相等的兩項(xiàng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.如圖程序輸出的結(jié)果s=57,則判斷框中應(yīng)填( 。
A.i<7B.i>7C.i≥6D.i>6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖所示,該幾何體是由一個(gè)直三棱柱ADE-BCF和一個(gè)正死棱錐P-ABCD組合而成,AD⊥AF,AE=AD=2.
(1)證明:平面PAD⊥平面ABFE;
(2)當(dāng)正四棱錐P-ABCD的高為1時(shí),求二面角C-AF-P的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.近幾年騎車鍛煉越來(lái)越受到人們的喜愛(ài),男女老少踴躍參加,我校課外活動(dòng)小組利用春節(jié)放假時(shí)間進(jìn)行社會(huì)實(shí)踐,對(duì)[25,55]年齡段的人群隨機(jī)抽取n人進(jìn)行了一次“你是否喜歡騎車鍛煉”的問(wèn)卷,將被調(diào)查人員分為“喜歡騎車”和“不喜歡騎車”,得到如下統(tǒng)計(jì)表和各年齡段人數(shù)頻率分布直方圖:
組數(shù)分組喜歡騎車鍛煉的人數(shù)占本組的頻率
第一組[25,30)1200.6
第二組[30,35)195p
第三組[35,40)1000.5
第四組[40,45)a0.4
第五組[45,50)300.3
第六組[50,55]150.3
(1)補(bǔ)全頻率分布直方圖,并n,a,p的值;
(2)從[40,50)歲年齡段的“喜歡騎車”中采用分層抽樣法抽取6人參加騎車鍛煉體驗(yàn)活動(dòng),求其中選取2名領(lǐng)隊(duì)來(lái)自同一組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.在平面直角坐標(biāo)系xOy中,已知橢圓C:$\frac{{x}^{2}}{m+8}$+$\frac{{y}^{2}}{m}$=1(m>0)的離心率為$\frac{\sqrt{6}}{3}$.
(1)求m的值;
(2)設(shè)點(diǎn)A為橢圓C的上頂點(diǎn),問(wèn)是否存在橢圓C的一條弦AB,使直線AB與圓(x-1)2+y2=r2(r>0)相切,且切點(diǎn)P恰好為線段AB的中點(diǎn)?若存在,其滿足條件的所有直線AB的方程和對(duì)應(yīng)的r的值?若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知數(shù)列{an}的通項(xiàng)公式是an=n($\frac{4}{5}$)n,
(1)判斷數(shù)列{an}的單調(diào)性;
(2)是否存在最小正整數(shù)k,使得an<k對(duì)任意的n∈N*都成立,若存在,求出k的值,若不在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.某種放射性元素的原子數(shù)N隨時(shí)間t的變化規(guī)律是N=N0e-λt,其中N0,λ是正的常數(shù).
(1)說(shuō)明函數(shù)是增函數(shù)還是減函數(shù);
(2)把t表示為原子數(shù)N的函數(shù);
(3)當(dāng)N=$\frac{{N}_{0}}{2}$時(shí),求t的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案