4.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}=1$(a>0,b>0)的離心率為$\frac{\sqrt{10}}{2}$,且過點(2,$\sqrt{3}$),則雙曲線C的標準方程為( 。
A.$\frac{{x}^{2}}{2}-\frac{{y}^{2}}{3}=1$B.$\frac{{x}^{2}}{3}-\frac{{y}^{2}}{9}=1$C.$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{6}=1$D.x2-y2=1

分析 根據(jù)雙曲線的離心率以及過點的坐標,建立方程關系進行求解即可得到結論.

解答 解:∵雙曲線的離心率為$\frac{\sqrt{10}}{2}$,
∴e=$\frac{c}{a}$=$\frac{\sqrt{10}}{2}$,即c=$\frac{\sqrt{10}}{2}$a,則b2=c2-a2=$\frac{10}{4}$a2-a2=$\frac{3}{2}$a2,
則雙曲線的方程為$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{\frac{3{a}^{2}}{2}}$=1,
∵雙曲線過點(2,$\sqrt{3}$),
∴$\frac{4}{{a}^{2}}-\frac{6}{3{a}^{2}}$=1,即$\frac{2}{{a}^{2}}$=1,
得a2=2,b2=3,
則雙曲線C的標準方程為$\frac{{x}^{2}}{2}-\frac{{y}^{2}}{3}=1$,
故選:A

點評 本題主要考查雙曲線方程的求解,根據(jù)條件建立方程關系進行求解是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

1.在△ABC中,角A,B,C所對的邊分別為a,b,c,已知a=3,1+$\frac{tanA}{tanB}$=$\frac{2c}$,則b+c的最大值為6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知{an}為等差數(shù)列,其前n項和為Sn,且a1=21,a1+a2+a3=57.
(1)求數(shù)列{an}的通項公式;
(2)求Sn的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:2017屆河北滄州市高三9月聯(lián)考數(shù)學(理)試卷(解析版) 題型:選擇題

已知銳角滿足,則的值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源:2017屆河北滄州市高三9月聯(lián)考數(shù)學(理)試卷(解析版) 題型:選擇題

設復數(shù)為虛數(shù)單位),的共軛復數(shù)為,則在復平面內(nèi)對應的點在( )

A.第一象限 B.第二象限 C.第三象限 D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知正項等比數(shù)列{an}中,a1+a5=34,a2a4=64,則數(shù)列{an}的前n項和Sn=2n+1-2,或64$(1-\frac{1}{{2}^{n}})$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.下列命題中正確的是( 。
A.若p∨q為真命題,則p∧q為真命題
B.“m=n”是“方程mx2+ny2=1表示圓”的充要條件
C.命題:“?x0∈R,x${\;}_{0}^{2}$+2x0+a≤0”的否定是:“?x∈R,x2+2x+a>0”
D.若直線x-ay=0與直線x+ay=0互相垂直,則a=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.在空間直角坐標系中,點P(1,-2,3)關于坐標平面xoy的對稱點為P′,則點P與P′間的距離|PP′|為( 。
A.$\sqrt{14}$B.6C.4D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.某同學在研究性學習中,收集到某制藥廠2015年前5月甲膠囊生產(chǎn)產(chǎn)量(單位:萬盒)的數(shù)據(jù)如下表所示:
月份x12345
生產(chǎn)產(chǎn)量y(萬盒)44566
(1)該同學為了求出y關于x的線性回歸方程$\hat y=\hat bx+\hat a$,根據(jù)表中數(shù)據(jù)已經(jīng)正確計算出$\hat b$=0.6,試求出$\hat a$的值,并估計該廠六月份生產(chǎn)的甲膠囊的數(shù)量;
(2)若某藥店現(xiàn)有該制藥廠二月份生產(chǎn)的甲膠囊2盒和三月份生產(chǎn)的甲膠囊3盒,小紅同學從中隨機購買了2盒,后經(jīng)了解發(fā)現(xiàn)該制藥廠二月份生產(chǎn)的所有甲膠囊均存在質(zhì)量問題.記“小紅同學所購買的2盒甲膠囊中存在質(zhì)量問題的盒數(shù)為1”為事件A,求事件A的概率.

查看答案和解析>>

同步練習冊答案