月份x | 1 | 2 | 3 | 4 | 5 |
生產(chǎn)產(chǎn)量y(萬盒) | 4 | 4 | 5 | 6 | 6 |
分析 (1)由線性回歸方程過點($\overline{x}$,$\overline{y}$),代入方程可得$\stackrel{∧}{a}$的值,把x=6代入回歸方程可得6月份生產(chǎn)的甲膠囊產(chǎn)量數(shù);
(2)確定基本事件的個數(shù),利用古典概型概率公式,可得結(jié)論.
解答 解:(1)由題意,$\overline{x}$=3,$\overline{y}$=$\frac{1}{5}$(4+4+5+6+6)=5,
因線性回歸方程$\hat y=\hat bx+\hat a$,過點($\overline{x}$,$\overline{y}$),
∴$\stackrel{∧}{a}$=5-0.6×3=3.2,
∴6月份的生產(chǎn)甲膠囊的產(chǎn)量數(shù):$\stackrel{∧}{y}$=0.6×6+3.2=6.8.
(2)某藥店現(xiàn)有該制藥廠二月份生產(chǎn)的甲膠囊2盒和三月份生產(chǎn)的甲膠囊3盒,小紅同學(xué)從中隨機購買了2盒,基本事件共有${C}_{5}^{2}$=10個,
記“小紅同學(xué)所購買的2盒甲膠囊中存在質(zhì)量問題的盒數(shù)為1”為事件A,基本事件的個數(shù)為2,
則事件A的概率為$\frac{2}{10}$=$\frac{1}{5}$.
點評 本題考查線性回歸方程、古典概型概率的計算,考查學(xué)生分析解決問題的能力.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{x}^{2}}{2}-\frac{{y}^{2}}{3}=1$ | B. | $\frac{{x}^{2}}{3}-\frac{{y}^{2}}{9}=1$ | C. | $\frac{{x}^{2}}{4}-\frac{{y}^{2}}{6}=1$ | D. | x2-y2=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | π | B. | $\frac{2}{3}$ | C. | $\frac{{2\sqrt{2}}}{3}$ | D. | $\frac{{2\sqrt{2}}}{3}π$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{3}{2}$ | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $[{1,\frac{3}{2}})$ | B. | $[{\frac{3}{2},+∞})$ | C. | [1,2) | D. | $[{\frac{3}{2},2})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [kπ-$\frac{π}{2}$,kπ+$\frac{5π}{12}$],(k∈Z) | B. | [kπ+$\frac{π}{3}$,kπ+$\frac{2π}{3}$],(k∈Z) | ||
C. | [kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$],(k∈Z) | D. | [kπ+$\frac{5π}{12}$,kπ+$\frac{11π}{12}$],(k∈Z) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com