9.若直線ax+by+1=0(a、b>1)過圓x2+y2+8x+2y+1=0的圓心,則$\frac{1}{a}$+$\frac{4}$的最小值為16.

分析 直線過圓心,先求圓心坐標,推出4a+b=1,利用1的代換,以及基本不等式求最小值即可.

解答 解:圓x2+y2+8x+2y+1=0的圓心(-4,-1)在直線ax+by+1=0上,
所以-4a-b+1=0,即 1=4a+b代入,
得$\frac{1}{a}$+$\frac{4}$=($\frac{1}{a}$+$\frac{4}$)(4a+b)=8+$\frac{a}$+$\frac{16a}$≥16(a>0,b>0當且僅當4a=b時取等號)
則$\frac{1}{a}$+$\frac{4}$的最小值為16,
故答案為:16.

點評 本題考查直線與圓的位置關(guān)系,基本不等式,本題關(guān)鍵是利用1的代換后利用基本不等式,考查計算能力,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)集合M={x|$\frac{x-3}{x+5}$<0},N={y|y2+6y-7≥0},則M∩N=( 。
A.(-5,1]B.[1,3)C.D.(-5,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知log${\;}_{\frac{1}{2}}}$a>log${\;}_{\frac{1}{2}}}$b,則下列不等式成立的是( 。
A.ln(a-b)>0B.$\frac{1}{a}<\frac{1}$C.3a-b<1D.loga2<logb2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=|x-a|.
(1)若不等式f(x)≤3的解集為{x|-1≤x≤5},求實數(shù)a的值;
(2)當a=1時,若f(x)+f(x+5)≥m對一切實數(shù)x恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在直角坐標系xOy中,過點P(2,-1)的直線l的傾斜角為45°.以坐標原點為極點,x軸正半軸為極坐標建立極坐標系,曲線C的極坐標方程為ρsin2θ=4cosθ,直線l和曲線C的交點為A,B.
(1)求曲線C的直角坐標方程;  
 (2)求|PA|•|PB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在各項均為正數(shù)的等比數(shù)列{an}中,a1=2,且a2,a4+2,a5成等差數(shù)列,記Sn是數(shù)列{an}的前n項和,則S5=62.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在等差數(shù)列{an}的前n項和為Sn,若a2+a4+a15的值為常數(shù),則下列為常數(shù)的是( 。
A.S7B.S8C.S13D.S15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.${∫}_{0}^{\frac{π}{6}}$cosxdx=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.不等式x2+ax+6≤0的解集為{x|2≤x≤3},則實數(shù)a的值為( 。
A.5B.-5C.6D.-6

查看答案和解析>>

同步練習(xí)冊答案