【題目】給出以下四個命題:
①設是空間中的三條直線,若,,則.
②在面積為的的邊上任取一點,則的面積大于的概率為.
③已知一個回歸直線方程為,則.
④數(shù)列為等差數(shù)列的充要條件是其通項公式為的一次函數(shù).
其中正確命題的充號為________.(把所有正確命題的序號都填上)
科目:高中數(shù)學 來源: 題型:
【題目】已知某企業(yè)近3年的前7個月的月利潤(單位:百萬元)如下面的折線圖所示:
(1)試問這3年的前7個月中哪個月的月平均利潤最高?
(2)通過計算判斷這3年的前7個月的總利潤的發(fā)展趨勢;
(3)試以第3年的前4個月的數(shù)據(jù)(如下表),用線性回歸的擬合模式估測第3年8月份的利潤.
月份x | 1 | 2 | 3 | 4 |
利潤y(單位:百萬元) | 4 | 4 | 6 | 6 |
相關公式: , .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的長軸長為,右頂點到左焦點的距離為,、分別為橢圓的左、右兩個焦點.
(1)求橢圓的方程;
(2)已知橢圓的切線(與橢圓有唯一交點)的方程為,切線與直線和直線分別交于點、,求證:為定值,并求此定值;
(3)設矩形的四條邊所在直線都和橢圓相切(即每條邊所在直線與橢圓有唯一交點),求矩形的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的焦距為,且過點.
(1)求橢圓的標準方程;
(2)若直線與拋物線相交于兩點,與橢圓相交于兩點,(為坐標原點),為拋物線的焦點,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(2017·衢州調研)已知四棱錐P-ABCD的底面ABCD是菱形,∠ADC=120°,AD的中點M是頂點P在底面ABCD的射影,N是PC的中點.
(1)求證:平面MPB⊥平面PBC;
(2)若MP=MC,求直線BN與平面PMC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】數(shù)據(jù)的收集和整理在當今社會起到了舉足輕重的作用,它用統(tǒng)計的方法來幫助人們分析以往的行為習慣,進而指導人們接下來的行動.
某支足球隊的主教練打算從預備球員甲、乙兩人中選一人為正式球員,他收集到了甲、乙兩名球員近期5場比賽的傳球成功次數(shù),如下表:
場次 | 第一場 | 第二場 | 第三場 | 第四場 | 第五場 |
甲 | 28 | 33 | 36 | 38 | 45 |
乙 | 39 | 31 | 43 | 39 | 33 |
(1)根據(jù)這兩名球員近期5場比賽的傳球成功次數(shù),完成莖葉圖(莖表示十位,葉表示個位);分別在平面直角坐標系中畫出兩名球員的傳球成功次數(shù)的散點圖;
(2)求出甲、乙兩名球員近期5場比賽的傳球成功次數(shù)的平均值和方差;
(3)主教練根據(jù)球員每場比賽的傳球成功次數(shù)分析出球員在場上的積極程度和技術水平,同時根據(jù)多場比賽的數(shù)據(jù)也可以分析出球員的狀態(tài)和潛力.你認為主教練應選哪位球員?并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱錐中,是邊長為2的正三角形,是等腰直角三角形,.
(I)證明:平面平面ABC;
(II)點E在BD上,若平面ACE把三棱錐分成體積相等的兩部分,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(Ⅰ)當時,求曲線在處的切線方程;
(Ⅱ)設函數(shù),試判斷函數(shù)是否存在最小值,若存在,求出最小值,若不存在,請說明理由.
(Ⅲ)當時,寫出與的大小關系.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,曲線C1的參數(shù)方程為(φ為參數(shù)),以坐標原點O為極點,x軸的正半軸為極軸,建立極坐標系.
(1)求C1的極坐標方程;
(2)若C1與曲線C2:ρ=2sinθ交于A,B兩點,求|OA||OB|的值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com