分析 利用判別式法求出不等式x2-2ax+a+2≤0的解集M,根據(jù)M⊆N,求出對(duì)應(yīng)a的取值范圍.
解答 解:因?yàn)椴坏仁絰2-2ax+a+2≤0的解集為M,N=[1,4];
當(dāng)△=4a2-4(a+2)<0,即-1<a<2時(shí),M=∅,滿足題意;…(2分)
當(dāng)△=0,a=-1,M={-1}不合題意,a=2時(shí),M={2}滿足題意;…(4分)
當(dāng)△>0時(shí),即a>2或a<-1時(shí),令f(x)=x2-2ax+a+2,
要使M⊆[1,4],只需$\left\{\begin{array}{l}{1<a<4}\\{f(1)=3-a≥0}\\{f(4)=18-7a≥0}\end{array}\right.$,
解得2<a≤$\frac{18}{7}$;9分
綜上,a的取值范圍是-1<a≤$\frac{18}{7}$.(12分)
點(diǎn)評(píng) 本題考查了含有字母系數(shù)的一元二次不等式的解法與應(yīng)用問(wèn)題,也考查了集合的運(yùn)算問(wèn)題,是綜合性題目.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{a+b}{2}$>b>$\sqrt{ab}$>a | B. | b>$\sqrt{ab}$>$\frac{a+b}{2}$>a | C. | b>a>$\frac{a+b}{2}$>$\sqrt{ab}$ | D. | b>$\frac{a+b}{2}$>$\sqrt{ab}$>a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{\sqrt{3}}{6}$ | B. | $\frac{\sqrt{3}}{3}$ | C. | $\frac{\sqrt{2}}{4}$ | D. | $\frac{\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 30° | B. | 45° | C. | 60° | D. | 135° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{1}{2}$ | B. | -2 | C. | $\frac{1}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3i>2i | B. | |2-i|>2i2 | C. | |2+3i|>|1-4i| | D. | i2>-i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{3}{2}$ | C. | 1 | D. | 2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com