13.若α、β滿足α-β=π,則下列等式成立的是(  )
A.sinα=sinβB.cosα=cosβC.tanα=tanβD.sinα=cosβ

分析 由已知可得α=π+β,利用誘導(dǎo)公式即可化簡求值,判斷得解.

解答 解:∵α-β=π,即α=π+β,
∴sinα=sin(π+β)=-sinβ,A不正確;
cosα=cos(π+β)=-cosβ,B不正確;
tanα=tan(π+β)=tanβ,C正確;
sinα=sin(π+β)=-sinβ,D不正確;
故選:C.

點(diǎn)評 本題主要考查了誘導(dǎo)公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)的定義域?yàn)镽+,且對一切正實(shí)數(shù)x,y都有f(x+y)=f(x)+f(y)成立,若f(4)=2,求f(2)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在△ABC中,角A,B,C所對的邊分別為a,b,c,已知S△ABC=$\frac{\sqrt{3}}{12}$a2,b=2,則c+$\frac{4}{c}$的最大值為(  )
A.5$\sqrt{2}$B.8C.6$\sqrt{3}$D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知$\frac{1}{3}$≤a≤1,若函數(shù)f(x)=ax2-2x+1在x∈[1,3]上的最小值為N(a),最大值為M(a).設(shè)g(a)=M(a)-N(a).
(1)求g(a)的函數(shù)解析式;
(2)求g(a)的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=$\frac{1+2x}{3-4x}$,求f-1(2)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,0<φ<$\frac{π}{2}$)的部分圖象如圖所示.
(1)求f(x)的解析式;
(2)將y=f(x)的圖象向右平移φ個單位長度,所得函數(shù)y=g(x)的圖象關(guān)y軸對稱,求φ的最小正值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知直線l過點(diǎn)M(1,4),且與兩坐標(biāo)軸圍成的三角形面積等于1,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知點(diǎn)A(0,2).曲線C:y=alnx恒過定點(diǎn)B,P為曲線C上的動點(diǎn),$\overrightarrow{AP}•\overrightarrow{AB}$的最小值為5,則a=( 。
A.-1B.-$\frac{1}{2}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.兩物體A,B相距m厘米,在同一時間A、B兩物體相向運(yùn)動,甲第一秒的速度為3厘米/秒,以后每秒的速度比前一秒的速度快4厘米/秒;乙第一秒的速度為2厘米/秒,以后每秒的速度是前一秒速度的$\frac{3}{2}$倍,在經(jīng)過了8秒后,兩物體相遇,求m的值.

查看答案和解析>>

同步練習(xí)冊答案