16.將二進(jìn)制數(shù)11101(2)轉(zhuǎn)化為四進(jìn)制數(shù),正確的是( 。
A.120(4)B.131(4)C.200(4)D.202(4)

分析 先將“二進(jìn)制”數(shù)化為十進(jìn)制數(shù),然后將十進(jìn)制的29化為四進(jìn)制,即可得到結(jié)論.

解答 解:先將“二進(jìn)制”數(shù)11101(2)化為十進(jìn)制數(shù)為1×24+1×23+1×22+0×21+1×20=16+8+4+0+1=29.
然后將十進(jìn)制的29化為四進(jìn)制:
29÷4=7余1,
7÷4=1余3,
1÷4=0余1
所以,結(jié)果是131(4)
故選:B.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是二進(jìn)制、十進(jìn)制與四進(jìn)制之間的轉(zhuǎn)化,其中熟練掌握“除k取余法”的方法步驟是解答本題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.設(shè)A(x1,y1),B(x2,y2),D(x3,y3)是拋物線y2=4x上三點(diǎn),F(xiàn)是拋物線的焦點(diǎn)且|AF|,|BF|,|DF|成等差數(shù)列.當(dāng)AD的垂直平分線與x軸交于點(diǎn)T(3,0)時(shí),求點(diǎn)B的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知數(shù)列{an}的前n項(xiàng)和Sn=$\frac{3}{2}$an+n-3,求證:數(shù)列{an-1}是等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)y=$\frac{1}{2}$loga(a2x)•loga(ax)(2≤x≤4)的最大值是0,最小值是-$\frac{1}{8}$,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知$\overrightarrow{a}$,$\overrightarrow$是非零向量,若向量$\overrightarrow{a}$是平面α的一個(gè)法向量,則“$\overrightarrow{a}$•$\overrightarrow$=0”是“向量$\overrightarrow$所在的直線平行于平面α”的( 。l件.
A.充分不必要B.必要不充分
C.充分必要D.既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1..已知函數(shù)f(x)=2cos2x+$\sqrt{3}$sin2x,x∈R.
(1)求f(x)的最大值及相應(yīng)的x的取值集合.
(2)求f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.不等式x2+mx+n<0的解集為{x|-3<x<2},則mn=-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知x為三角形中的最小角,則函數(shù)y=sin(x+$\frac{π}{3}$)+sin(x-$\frac{π}{3}$)+$\sqrt{3}$cosx+1的值域?yàn)閇$\sqrt{3}$+1,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=$\frac{1}{2}$x2-2alnx+(a-2)x,a∈R.
(1)若函數(shù)f(x)在(2,+∞)上為單調(diào)遞增函數(shù),求實(shí)數(shù)a的范圍;
(2)試討論f(x)在[2,e]上的最小值g(a).

查看答案和解析>>

同步練習(xí)冊(cè)答案