11.已知不等式組$\left\{\begin{array}{l}{x≥0}\\{x-y≤0}\\{4x+3y≤12}\end{array}\right.$則z=$\frac{y-1}{x+1}$的最大值為3.

分析 畫出滿足條件的平面區(qū)域,結合$\frac{y-1}{x+1}$的幾何意義求出z的最大值即可.

解答 解:畫出滿足條件的平面區(qū)域,如圖示:
,
$\frac{y-1}{x+1}$的幾何意義表示平面區(qū)域內的點與點A(-1,1)的直線的斜率,
結合圖象直線過AB時,斜率最大,
此時z=$\frac{4-1}{0+1}$=3,
故答案為:3.

點評 本題考查了簡單的線性規(guī)劃問題,考查數(shù)形結合思想,是一道中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

1.已知拋物線C:y2=2px(p>0)上的一點M(3,t)到焦點的距離為5.
(Ⅰ)求拋物線C的方程;
(Ⅱ)過點T(-2,0)的直線l與拋物線C交于A,B兩點,若在x軸上存在一點E,使得△EAB是以點E為直角頂點的直角三角形,求直線l的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知等差數(shù)列{an}的前n項和為Sn,a4+a7=20,對任意的k∈N都有Sk+1=3Sk+k2
(I) 求數(shù)列{an}的通項公式;
(Ⅱ)數(shù)列{bn}定義如下:2mbm(m∈N*)是使不等式an≥m成立所有n中的最小值,求{bn}的通項公式及{(-1)m-1bm}的前2m項和T2m

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.若i是虛數(shù)單位,$\overline{z}$是z的共軛復數(shù),若z=$\frac{1-2i}{1+i}$,則|$\overline{z}$|為( 。
A.$\frac{\sqrt{10}}{2}$B.$\frac{\sqrt{5}}{2}$C.$\frac{5}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知F1,F(xiàn)2分別為橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右兩個焦點,橢圓上點M($\frac{1}{2}$,$\frac{3\sqrt{5}}{4}$)到F1、F2兩點的距離之和等于4.
(1)求橢圓C的方程;
(2)已知過右焦點且垂直于x軸的直線與橢圓交于點N(點N在第一象限),E,F(xiàn)是橢圓C上的兩個動點,如果kEN+KFN=0,證明直線EF的斜率為定值,并求出這個定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知A、B為雙曲線E的左右頂點,點M在E上,△ABM為等腰三角形,且頂角為120°,則E的離心率為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)f(x)=2$\sqrt{2}$sinxcos(x+$\frac{π}{4}}$).
(Ⅰ) 若在△ABC中,BC=2,AB=$\sqrt{2}$,求使f(A-$\frac{π}{4}$)=0的角B.
(Ⅱ)求f(x)在區(qū)間[${\frac{π}{2}$,$\frac{17π}{24}}$]上的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知數(shù)列{an}中,a1=t,an+1=$\frac{{a}_{n}}{2}$+$\frac{2}{{a}_{n}}$,若{an}為單調遞減數(shù)列,則實數(shù)t的取值范圍是( 。
A.(-∞,-2)B.(-2,0)C.(0,2)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.圓C與直線x+y=0及x+y-4=0都相切,圓心在直線x-y=0上,則圓C的方程為(x-1)2+(y-1)2=2.

查看答案和解析>>

同步練習冊答案