【題目】在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為 (α為參數(shù))M是C1上的動(dòng)點(diǎn),P點(diǎn)滿足 =2 ,P點(diǎn)的軌跡為曲線C2
(1)求C2的方程;
(2)在以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,射線θ= 與C1的異于極點(diǎn)的交點(diǎn)為A,與C2的異于極點(diǎn)的交點(diǎn)為B,求|AB|.
【答案】
(1)解:設(shè)P(x,y),則由條件知M( , ).由于M點(diǎn)在C1上,
所以 即
從而C2的參數(shù)方程為
(α為參數(shù))
(2)解:曲線C1的極坐標(biāo)方程為ρ=4sinθ,曲線C2的極坐標(biāo)方程為ρ=8sinθ.
射線θ= 與C1的交點(diǎn)A的極徑為ρ1=4sin ,
射線θ= 與C2的交點(diǎn)B的極徑為ρ2=8sin .
所以|AB|=|ρ2﹣ρ1|=
【解析】(1)先設(shè)出點(diǎn)P的坐標(biāo),然后根據(jù)點(diǎn)P滿足的條件代入曲線C1的方程即可求出曲線C2的方程;(2)根據(jù)(1)將求出曲線C1的極坐標(biāo)方程,分別求出射線θ= 與C1的交點(diǎn)A的極徑為ρ1 , 以及射線θ= 與C2的交點(diǎn)B的極徑為ρ2 , 最后根據(jù)|AB|=|ρ2﹣ρ1|求出所求.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人進(jìn)行某項(xiàng)對(duì)抗性游戲,采用“七局四勝”制,即先贏四局者為勝,若甲、乙兩人水平相當(dāng),且已知甲先贏了前兩局.
Ⅰ求乙取勝的概率;
Ⅱ記比賽局?jǐn)?shù)為X,求X的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)=|ax﹣2|.
(1)若關(guān)于x的不等式f(x)<3的解集為(﹣ , ),求a的值;
(2)f(x)+f(﹣x)≥a對(duì)于任意x∈R恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2x+2﹣x .
(1)求方程f(x)= 的根;
(2)求證:f(x)在[0,+∞)上是增函數(shù);
(3)若對(duì)于任意x∈[0,+∞),不等式f(2x)≥f(x)﹣m恒成立,求實(shí)數(shù)m的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,E是PC的中點(diǎn). 求證:
(1)PA∥平面BDE;
(2)BD⊥平面PAC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l過點(diǎn)P(2,1),且與x軸,y軸的正半軸分別交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),當(dāng)取最大值時(shí)l的方程為____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PB、PD與平面ABCD所成角的正切值依次是1、,AP=2,E、F依次是PB、PC的中點(diǎn).
(1)求證:PB⊥平面AEFD;
(2)求直線EC與平面PAD所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直角△ABC中,∠C=90°,D在BC上,CD=2DB,tan∠BAD= ,則sin∠BAC=( )
A.
B.
C.
D. 或
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在凸四邊形ABCD中,AB=1,BC= ,AC⊥DC,CD= AC.設(shè)∠ABC=θ.
(1)若θ=30°,求AD的長;
(2)當(dāng)θ變化時(shí),求BD的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com