【題目】設(shè)函數(shù)
(1)若在點處的切線斜率為,求的值;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)若,求證:在時, .
【答案】(1);(2)當時, 的單調(diào)減區(qū)間為.單調(diào)增區(qū)間為;
當時, 的單調(diào)減區(qū)間為;(3)證明見解析.
【解析】試題分析:(1)先求出,通過在點處的切線斜率,可得,解得;(2)由(1)知: ,結(jié)合導(dǎo)數(shù)分①、②兩種情況討論分別令求得 的范圍,可得函數(shù)增區(qū)間, 求得 的范圍,可得函數(shù)的減區(qū)間;;(3)通過變形,只需證明即可,利用,根據(jù)指數(shù)函數(shù)及冪函數(shù)的性質(zhì)、函數(shù)的單調(diào)性及零點判定定理即得到結(jié)論.
試題解析:(1)若在點處的切線斜率為,
,
得.
(2)由
當時,令解得:
當變化時, 隨變化情況如表:
由表可知: 在上是單調(diào)減函數(shù),在上是單調(diào)增函數(shù)
當時, , 的單調(diào)減區(qū)間為
所以,當時, 的單調(diào)減區(qū)間為.單調(diào)增區(qū)間為
當時, 的單調(diào)減區(qū)間為
(3)當時,要證,即證
令,只需證
∵
由指數(shù)函數(shù)及幕函數(shù)的性質(zhì)知: 在上是增函數(shù)
∵,∴在內(nèi)存在唯一的零點,
也即在上有唯一零點
設(shè)的零點為,則,即,
由的單調(diào)性知:
當時, , 為減函數(shù)
當時, , 為增函數(shù),
所以當時.
∴.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x+2|﹣2|x﹣1|.
(1)解不等式f(x)≥﹣2;
(2)對任意x∈R,都有f(x)≤x﹣a成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2sinx+1. (Ⅰ)設(shè)ω為大于0的常數(shù),若f(ωx)在區(qū)間 上單調(diào)遞增,求實數(shù)ω的取值范圍;
(Ⅱ)設(shè)集合 ,B={x||f(x)﹣m|<2},若A∪B=B,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c且b=c,∠A的平分線為AD,若 =m .
(1)當m=2時,求cosA
(2)當 ∈(1, )時,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知各項為正的數(shù)列{an}是等比數(shù)列,a1=2,a5=32,數(shù)列{bn}滿足:對于任意n∈N* , 有a1b1+a2b2+…+anbn=(n﹣1)2n+1+2.
(1)求數(shù)列{an}的通項公式;
(2)令f(n)=a2+a4+…+a2n , 求 的值;
(3)求數(shù)列{bn}通項公式,若在數(shù)列{an}的任意相鄰兩項ak與ak+1之間插入bk(k∈N*)后,得到一個新的數(shù)列{cn},求數(shù)列{cn}的前100項之和T100 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)對任意的實數(shù)滿足:f(x+3)=﹣ ,且當﹣3≤x<﹣1時,f(x)=﹣(x+2)2 , 當﹣1≤x<3時,f(x)=x.則f(1)+f(2)+f(3)+…+f(2016)= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,滿足:a2+c2=b2+ ac
(1)求∠B 的大;
(2)求 cosA+cosC 的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com