分析 由恒成立思想可得a2+a≤$\frac{9x}{y}$+$\frac{4y}{x}$的最小值,運用基本不等式可得右邊的最小值,再由二次不等式的解法,可得a的范圍.
解答 解:x>0,y>0,可得$\frac{9x}{y}$+$\frac{4y}{x}$≥2$\sqrt{\frac{9x}{y}•\frac{4y}{x}}$=12,
當(dāng)且僅當(dāng)3x=2y,取得最小值12,
由$\frac{9x}{y}$+$\frac{4y}{x}$≥a2+a恒成立,可得
a2+a≤12,解得-4≤a≤3.
故答案為:[-4,3].
點評 本題考查不等式恒成立問題的解法,注意轉(zhuǎn)化為求最值問題,注意運用基本不等式,考查運算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-3,-1] | B. | [-1,3] | C. | [1,3] | D. | [-3,1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=g(x)在(0,$\frac{π}{2}}$)單調(diào)遞增,其圖象關(guān)于直線x=$\frac{π}{4}$對稱 | |
B. | y=g(x)在(0,$\frac{π}{2}}$)單調(diào)遞增,其圖象關(guān)于直線x=$\frac{π}{2}$對稱 | |
C. | y=g(x)在(0,$\frac{π}{2}}$)單調(diào)遞減,其圖象關(guān)于直線x=$\frac{π}{4}$對稱 | |
D. | y=g(x)在(0,$\frac{π}{2}}$)單調(diào)遞減,其圖象關(guān)于直線x=$\frac{π}{2}$對稱 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com