【題目】汽車的普及給人們的出行帶來了諸多方便,但汽車超速行駛也造成了諸多隱患.為了解汽車通過某一段公路時(shí)的車輛行駛情況,現(xiàn)隨機(jī)抽測(cè)了通過這段公路的200輛汽車的行駛速度(單位:km/h),所得數(shù)據(jù)均在區(qū)間內(nèi),其頻率分布直方圖如圖所示.
(1)求被抽測(cè)的200輛汽車的平均行駛速度.
(2)已知該路段屬于事故高發(fā)路段,交警部門對(duì)此路段過往車輛限速60 km/h,并且對(duì)于超速行駛車輛有相應(yīng)處罰:記分(扣除駕駛員駕照的分?jǐn)?shù))和罰款.
罰款情況如下:
超速情況 | 10%以內(nèi) | 10%~20% | 20%~50% | 50%以上 |
罰款情況 | 0元 | 100元 | 150元 | 500元 |
求被抽測(cè)的200輛汽車中超速10%~20%的車輛數(shù).
【答案】(1) (2)20
【解析】
(1)由頻率分布直方圖中數(shù)據(jù)代入公式可得平均值;
(2)根據(jù)頻率分布直方圖先求出60 km/h~70 km/h之間、70 km/h ~80 km/h之間的車輛數(shù),由此得出66 km/h ~72 km/h之間的車輛數(shù)即可.
(1)被抽測(cè)的200輛汽車的平均行駛速度為
.
(2)超速10%~20%的車輛行駛速度為66 km/h~72 km/h.
此路段上汽車行駛速度在60 km/h~70 km/h之間的車輛數(shù)為.
行駛速度在66 km/h ~70 km/h之間的車輛數(shù)為.
行駛速度在70 km/h ~80 km/h之間的車輛數(shù)為.
所以行駛速度在70 km/h~72 km/h之間的車輛數(shù)為,
故超速10%~20%的車輛數(shù)約為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年,隨著中國第一款5G手機(jī)投入市場(chǎng),5G技術(shù)已經(jīng)進(jìn)入高速發(fā)展階段.已知某5G手機(jī)生產(chǎn)廠家通過數(shù)據(jù)分析,得到如下規(guī)律:每生產(chǎn)手機(jī)萬臺(tái),其總成本為,其中固定成本為800萬元,并且每生產(chǎn)1萬臺(tái)的生產(chǎn)成本為1000萬元(總成本=固定成本+生產(chǎn)成本),銷售收入萬元滿足
(1)將利潤表示為產(chǎn)量萬臺(tái)的函數(shù);
(2)當(dāng)產(chǎn)量為何值時(shí),公司所獲利潤最大?最大利潤為多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)寫出直線的普通方程和曲線的直角坐標(biāo)方程;
(2)證明:直線與曲線相交于兩點(diǎn),并求兩點(diǎn)之間的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面上有個(gè)點(diǎn),其中每?jī)牲c(diǎn)之間的連線均染成紅色或黑色.若圖中總存在兩個(gè)沒有公共邊的同色三角形,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校舉行漢字聽寫比賽,為了了解本次比賽成績(jī)情況,從得分不低于50分的試卷中隨機(jī)抽取100名學(xué)生的成績(jī)(得分均為整數(shù),滿分100分)進(jìn)行統(tǒng)計(jì),請(qǐng)根據(jù)頻率分布表中所提供的數(shù)據(jù),解答下列問題:
(1)求的值;
(2)若從成績(jī)較好的第3、4、5組中按分層抽樣的方法抽取6人參加市漢字聽寫比賽,并從中選出2人做種子選手,求2人中至少有1人是第4組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給定數(shù)列. 對(duì),該數(shù)列前項(xiàng)的最大值記為,后項(xiàng)的最小值記為,.
(1)設(shè)數(shù)列為3,4,7,1. 寫出的值;
(2)設(shè)是公比大于的等比數(shù)列,且,證明是等比數(shù)列;
(3)若,證明是常數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,焦點(diǎn)在軸上的鞘園C:經(jīng)過點(diǎn),且經(jīng)過點(diǎn)作斜率為的直線交橢圓C與A、B兩點(diǎn)(A在軸下方).
(1)求橢圓C的方程;
(2)過點(diǎn)且平行于的直線交橢圓于點(diǎn)M、N,求的值;
(3)記直線與軸的交點(diǎn)為P,若,求直線的斜率的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求證:恒成立;
(2)若關(guān)于的方程至少有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com