已知α∈(0,
π
2
),sin(α+
π
4
)=
3
5
,求sinα.
考點(diǎn):兩角和與差的正弦函數(shù)
專題:三角函數(shù)的求值
分析:根據(jù)兩角和的正弦公式即可得到結(jié)論.
解答: 解:∵α∈(0,
π
2
),∴α+
π
4
∈(
π
4
4
),
∵sin(α+
π
4
)=
3
5
∈(
1
2
2
2
),
∴α+
π
4
∈(
π
6
,
π
4
)(舍)或α+
π
4
∈(
4
,
6
),
∴cos(α+
π
4
)=-
4
5

則sinα=sin(α+
π
4
-
π
4
)=
2
2
[sin(α+
π
4
)-cos(α+
π
4
)]=
2
2
×(
3
5
+
4
5
)=
7
2
10
點(diǎn)評:本題主要考查三角函數(shù)值的計(jì)算,利用兩角和差的正弦公式是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

e1
e2
不共線,
a
=
e1
+
e2
,
b
=3
e1
-3
e2
,
a
b
是否共線?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在一次無放回的抽獎活動中,已知箱中裝有除顏色不同外,形狀、大小、質(zhì)地均相同的2個紅球、2個黃球、1個藍(lán)球,且混淆均勻,規(guī)定:取出一個紅球得3分,取出一個黃球得2分,取出一個藍(lán)球得1分.現(xiàn)從箱中任取2個球.
(1)求取出的球1紅1黃的概率;
(2)求得分之和為4分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α,β∈[-
π
2
π
2
]
,且αsinα-βsinβ>0,則下列結(jié)論正確的是( 。
A、α3>β3
B、α+β>0
C、|α|<|β|
D、|α|>|β|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2x2+ax-2a
2x
在區(qū)間[1,+∞)上是增函數(shù),則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A(4,-1),B(8,2)和直線l:x-y-1=0,動點(diǎn)P(x,y)在直線l上,求|PA|+|PB|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,在定義域內(nèi)是減函數(shù)的為(  )
A、y=-3x2
B、y=-
1
x
C、y=5x
D、y=-4x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于非空數(shù)集A,若實(shí)數(shù)M滿足對任意的a∈A恒有a≤M,則M為A的上界;若A的所有上界中存在最小值,則稱此最小值為A的上確界,那么下列函數(shù)的值域中具有上確界的是( 。
A、y=
x+2
B、y=(-
3
2
)
C、y=
1
2
x
D、y=lnx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題P:x≤a或x≥3a,q:x≤-2或x≥3,且p是q的充分不必要條件,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案