6.從包括甲乙兩人的6名學(xué)生中選出3人作為代表,記事件A;甲被選為代表,事件B;乙沒有被選為代表,則P(B|A)等于$\frac{3}{5}$.

分析 利用組合數(shù)公式和古典概型的概率公式計(jì)算P(AB),P(B|A),代入條件概率公式計(jì)算即可.

解答 解:P(AB)=$\frac{{C}_{4}^{2}}{{C}_{6}^{3}}$=$\frac{3}{10}$,P(A)=$\frac{{C}_{5}^{2}}{{C}_{6}^{3}}$=$\frac{1}{2}$,
∴P(B|A)=$\frac{P(AB)}{P(A)}$=$\frac{3}{5}$.
故答案為:$\frac{3}{5}$.

點(diǎn)評(píng) 本題考查了條件概率的計(jì)算,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)=(x2-2x)ex,關(guān)于f(x)的性質(zhì),有以下四個(gè)推斷:
①f(x)的定義域是(-∞,+∞);
②函數(shù)f(x)是區(qū)間(0,2)上的增函數(shù);
③f(x)是奇函數(shù);
④函數(shù)f(x)在x=2處取得最小值.
其中推斷正確的個(gè)數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,a+c=5,b=$\sqrt{15}$,cosB=$\frac{1}{4}$.
(1)求a,c的值;
(2)求cosA的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若復(fù)數(shù)(a2-a-2)+(|a-1|-1)i(a∈R)是純虛數(shù),則a的取值范圍是( 。
A.a=-1或a=2B.a≠-1且a≠2C.a=-1D.a=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.某校運(yùn)動(dòng)會(huì),高二理三個(gè)班級(jí)的3名同學(xué)報(bào)名參加鉛球、跳高、三級(jí)跳遠(yuǎn)3個(gè)運(yùn)動(dòng)項(xiàng)目,每名同學(xué)都可以從3個(gè)運(yùn)動(dòng)項(xiàng)目中隨機(jī)選擇一個(gè),且每個(gè)人的選擇互相獨(dú)立.
(Ⅰ)求3名同學(xué)恰好選擇了2個(gè)不同運(yùn)動(dòng)項(xiàng)目的概率;
(Ⅱ)設(shè)選擇跳高的人數(shù)為ξ,試求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.命題“?x∈R,x2≥1”的否定是?x∈R,x2<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=ex-alnx+b,x>0,其中a>0,b∈R.
(1)若a=b=1,求曲線f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)證明:存在唯一的正實(shí)數(shù)x0,使函數(shù)f(x)在x0處取得極小值;
(3)若a+b=0,且函數(shù)f(x)有2個(gè)互不相同的零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知α∈($\frac{π}{2}$,π),sinα=$\frac{\sqrt{5}}{5}$,則cosα=$-\frac{2\sqrt{5}}{5}$;tan2α=$-\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若函數(shù)f(x)=$\frac{a}{x}$+ln(x-1)在定義域內(nèi)單調(diào)遞增,則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,4]B.(-∞,4)C.(-∞,0]D.(-∞,0)

查看答案和解析>>

同步練習(xí)冊(cè)答案